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Abstract

We estabish rigorous estimates for the Hausdorff dimension of the spectra of Laplacians
associated to Sierpiński lattices and infinite Sierpiński gaskets and other post-critically finite
self-similar sets.

1 Introduction
The study of the Laplacian on manifolds has been a very successful area of mathematical
analysis for over a century, combining ideas from topology, geometry, probability theory and
harmonic analysis. A comparatively new development is the theory of a Laplacian for certain
types of naturally occurring fractals, see [29, 26, 31, 9, 28, 12, 21], to name but a few. A
particularly well-known example is the following famous set.

Definition 1.1. The Sierpiński triangle T ⊂ R2 (see Figure 1(a)) is the smallest non-empty
compact set1 such that

⋃3
i=1 Ti(T) = T where T1, T2, T3 : R2 → R2 are the affine maps
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A second object which will play a role is the following infinite graph.

2020 Mathematics subject classification. 28A80, 37F35, 37C30, 65D05
*The authors were partly supported by ERC-Advanced Grant 833802-Resonances.
1In the literature, this set is also often referred to as the Sierpiński gasket, and denoted SG2.
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Figure 1: (a) The standard Sierpiński triangle T; (b) The Sierpiński lattice L; and (c) The infinite
Sierpiński triangle T∞.

Definition 1.2. Let V0 = {(0, 0), (1, 0), (12 ,
√
3
2 )} be the vertices of T and define Vn =⋃3

i=1 Ti(Vn−1). Further, fix a sequence ω = (ωn)n∈N ⊂ {1, 2, 3}N, and let

V∞ =

∞⋃
i=1

V n with V n = T−1ω1
◦ · · · ◦ T−1ωn

(Vn),

where we use the inverses

T−11 (x, y) = (2x, 2y) T−12 (x, y) = (2x− 1, 2y)

T−13 (x, y) =

(
2x− 1

2
, 2y −

√
3

2

)
.

The definition of V∞ depends on the choice of ω, however as will be explained below, the
relevant results do not, allowing us to omit the dependence in our notation. The points in V∞

correspond to the vertices of an infinite graph L called a Sierpiński lattice for which the edges
correspond to pairs of vertices (v, v′), with v, v′ ∈ V∞ such that ‖v − v′‖2 = 1 (see Figure
1(b)). Equivalently, L has an edge (v, v′) if and only if

v, v′ ∈ T−1ω1
◦ · · · ◦ T−1ωn

◦ Tin ◦ · · · ◦ Ti1(V0)

for some i1, . . . , in ∈ {1, 2, 3}, n > 0.

Finally, we will also be interested in infinite Sierpiński gaskets, which can be defined sim-
ilarly to Sierpiński lattices as follows.

Definition 1.3. For a fixed sequence ω = (ωn)n∈N, we define an infinite Sierpiński gasket to
be the unbounded set T∞ given by

T∞ =
∞⋃
n=0

Tn, with Tn = T−1ω1
◦ · · · ◦ T−1ωn

(T),

which is a countable union of copies of the standard Sierpiński triangle T (see Figure 1(c)).
As for Sierpiński lattices, the definition of T∞ depends on the choice of ω, but we omit this
dependence in our notation as the cited results hold independently of it.
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The maps T1, T2 and T3 are similarities on R2 with respect to the Euclidean norm, and
more precisely

‖Ti(x1, y1)− Ti(x2, y2)‖2 =
1

2
‖(x1, y1)− (x2, y2)‖2

for (x1, y1), (x2, y2) ∈ R2 and i = 1, 2, 3, and thus by Moran’s theorem the Hausdorff dimen-
sion of T has the explicit value dimH(T) = log 3

log 2 [8]. We can easily give the Hausdorff dimen-
sions of the other spaces. It is clear that dimH(L) = 1 and since an infinite Sierpiński gasket
T∞ consists of countably many copies of T it follows that we also have dimH(T∞) = log 3

log 2 .
In this note we are concerned with other fractal sets closely associated to the infinite Sier-

piński gasket T∞ and the Sierpiński lattice L, for which the Hausdorff dimensions are signifi-
cantly more difficult to compute.

In §2 we will describe how to associate to T a Laplacian ∆T which is a linear operator
defined on suitable functions f : T → R. An eigenvalue λ > 0 for −∆T on the Sierpiński
triangle is then a solution to the basic identity

∆Tf + λf = 0.

The spectrum σ(−∆T) ⊂ R+ of −∆T is a countable set of eigenvalues. In particular, its
Hausdorff dimension satisfies dimH(σ(−∆T)) = 0. A nice account of this theory appears in
the survey note of Strichartz [29] and his book [30].

By contrast, in the case of the infinite Sierpiński gasket and the Sierpiński lattice there are
associated Laplacians, denoted ∆T∞ and ∆L, respectively, with spectra σ(−∆T∞) ⊂ R+ and
σ(−∆L) ⊂ R+ which are significantly more complicated. In particular, their Hausdorff di-
mensions are non-zero and therefore their numerical values are of potential interest. However,
unlike the case of the dimensions of the original sets T∞ and L, there is no clear explicit form
for this quantity. Fortunately, using thermodynamic methods we can estimate the Hausdorff
dimension2 numerically to very high precision.

Theorem 1.4. The Hausdorff dimension of σ(−∆T∞) and σ(−∆L) satisfy

dimH(σ(−∆T∞)) = dimH (σ(−∆L)) = 0.55161856837246 . . .

A key point in our approach is that we have rigorous bounds, and the value in the above
theorem is accurate to the number of decimal places presented. We can actually estimate this
Hausdorff dimension to far more decimal places. To illustrate this, in the final section we give
an approximation to 100 decimal places.

It may not be immediately obvious what practical information the numerical value of the
Hausdorff dimension gives about the sets T∞ and L but it may have the potential to give an
interesting numerical characteristic of the spectra. Beyond pure fractal geometry, the spectra
of Laplacians on fractals are also of practical interest, for instance in the study of vibrations in
heterogeneous and random media, or the design of so-called fractal antennas [6, 10].

We briefly summarize the contents of this note. In §2 we describe some of the background
for the Laplacian on the Sierpiński graph. In particular, in §2.3 we recall the basic approach

2In this case the Hausdorff dimension equals the Box counting dimension, as will become apparent in the proof.
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X0 X1 X2

Figure 2: The first three graphs for the Sierpiński triangle.

of decimation which allows σ(∆T) to be expressed in terms of a polynomial RT(x). Although
we are not directly interested in the zero-dimensional set σ(−∆T), the spectra of σ(−∆T∞)
and σ(−∆L) actually contain a Cantor set JT ⊂ [0, 5], the so-called Julia set associated to the
polynomial RT(x).

As one would expect, other related constructions of fractal sets have similar spectral prop-
erties and their dimension can be similarly studied. In §3 we consider higher-dimensional
Sierpiński simplices, post-critically finite fractals, and an analogous problem where we con-
sider the spectrum of the Laplacian on infinite graphs (e.g., the Sierpiński graph and the Pascal
graph). In §4 we recall the algorithm we used to estimate the dimension and describe its ap-
plication. This serves to both justify our estimates and also to use them as a way to illustrate a
method with wider applications.

2 Spectra of the Laplacians

2.1 Energy forms
There are various approaches to defining the Laplacian ∆T on T. We will use one of the
simplest ones, using energy forms.

Following Kigami [12] the definition of the spectrum of the Laplacian for the Sierpiński
gasket T involves a natural sequence of finite graphs Xn with

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂
⋃
n

Xn ⊂
⋃
n

Xn =: T,

the first three of which are illustrated in Figure 2. To this end, let

V0 =

{
(0, 0), (1, 0),

(
1

2
,

√
3

2

)}
be the three vertices of X0. The vertices of Xn can be defined iteratively to be the set of points
satisfying

Vn = T1(Vn−1) ∪ T2(Vn−1) ∪ T3(Vn−1) for n > 1.

We denote by `2(Vn) (for n > 0) the real valued functions f : Vn → R (where the `2

notation is used for consistency with the infinite-dimensional case despite having no special
significance for finite sets).
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Definition 2.1. To each of the finite graphs Xn (n > 0) we can associate bilinear forms
En : `2(Vn)× `2(Vn)→ R called self-similar energy forms given by

En(f, g) = cn
∑
x∼ny

(f(x)− f(y))(g(x)− g(y)), (2.1)

where x, y ∈ Vn are vertices of Xn, and x ∼n y denotes neighbouring edges in Xn. In
particular, x ∼n y precisely when there exists x′, y′ ∈ Vn−1 and i ∈ {1, 2, 3} such that
x = Ti(x

′) and y = Ti(y
′). The value cn > 0 denotes a suitable scaling constant. With

a slight abuse of notation, we also write En(f) := En(f, f) for the corresponding quadratic
form `2(Vn)→ R.

To choose the values cn > 0 (for n > 0) we want the sequence of bilinear forms (En)∞n=0

to be consistent by asking that for any fn−1 : Vn−1 → R (for n > 1) we have

En−1(fn−1) = En(fn),

where fn : Vn → R denotes an extension which satisfies:

(a) fn(x) = fn−1(x) for x ∈ Vn−1; and

(b) fn satisfying (a) minimizes En(fn) (i.e., En(fn) = minf∈`2(Vn) En(f)).

The following is shown in [30], for example.

Lemma 2.2. The family (En)∞n=0 is consistent if we choose cn =
(
5
3

)n in (2.1).

The proof of this lemma is based on solving families of simultaneous equations arising
from (a) and (b). We can now define a bilinear form for functions on T using the consistent
family of bilinear forms (En)∞n=0.

Definition 2.3. For any continuous function f : T → R we can associate the limit

E(f) := lim
n→+∞

En(f) ∈ [0,+∞]

and let dom(E) = {f ∈ C(T) : E(f) < +∞}.

Remark 2.4. We can consider eigenfunctions f ∈ dom(E) which satisfy Dirichlet boundary
conditions (i.e., f |V0 = 0).

2.2 Laplacian for T

To define the Laplacian ∆T the last ingredient is to consider an inner product defined using the
natural measure µ on the Sierpiński triangle T.

Definition 2.5. Let µ be the natural measure on T such that

µ (Ti1 ◦ · · · ◦ Tinco(V0)) =
1

3n
for i1, . . . , in ∈ {1, 2, 3},

where co(V0) is the convex hull of V0, i.e., the filled-in triangle.
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Figure 3: The polynomial RT(x) and the contracting inverse branches S−1,T and S+1,T for the
Sierpiński triangle T.

In particular, µ is the Hausdorff measure for T, and the unique measure on T for which

T ∗i µ =
1

3
µ for i = 1, 2, 3.

The subspace dom(E) ⊂ L2(T, µ) is a Hilbert space. Using the measure µ and the bilinear
form E we recall the definition of the Laplacian ∆T .

Definition 2.6. For u ∈ dom(E) which vanishes on V0 we can define the Laplacian to be a
continuous function ∆Tu : T → R such that

E(u, v) = −
∫

(∆Tu)vdµ

for any v ∈ dom(E).

Remark 2.7. For each finite graph Xn, the spectrum σ(−∆Xn) for the graph Laplacian ∆Xn

will consist of a finite number of solutions of the eigenvalue equation

∆Xnf + λf = 0. (2.2)

This is easy to see because Vn is finite and thus the space `2(Vn) is finite-dimensional and
so the graph Laplacian can be represented as a matrix. There is then an alternative pointwise
formulation of the Laplacian of the form

∆Tu(x) =
3

2
lim

n→+∞
5n∆Xnu(x) (2.3)

where x ∈
⋃∞
n=1 Vn \ V0. The eigenvalue equation ∆Tu + λu = 0 then has admissible

solutions provided u,∆Tu ∈ C(T). A result of Kigami is that u ∈ dom(E) if and only if the
convergence in (2.3) is uniform [13].

2.3 Spectral decimation for σ(−∆T)

We begin by briefly recalling the fundamental notion of spectral decimation introduced by
[21, 22, 2], which describes the spectrum σ(−∆T).
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Definition 2.8. Given the polynomial RT : [0, 5]→ R defined by

RT(x) = x(5− x),

we can associate local inverses (see Figure 3) S−1,T, S+1,T : [0, 5]→ [0, 5] of the form

Sε,T(x) =
5

2
+
ε

2

√
25− 4x for ε = ±1. (2.4)

The process of spectral decimation (see [30, §3.2] or [9]) describes the eigenvalues of−∆T

as renormalized limits of (certain) eigenvalue sequences of −∆Xn , n ∈ N. These eigenvalues,
essentially, follow the recursive equality λn+1 = S±1,T(λn), while the corresponding eigen-
functions of−∆Xn+1 are such that their restrictions to Vn are eigenfunctions for−∆Xn . Thus,
the eigenvalue problem can be solved inductively, constructing solutions f to the eigenvalue
equation (2.2) at level n + 1 from solutions at level n ∈ N. The values of f at vertices in
Vn+1 \ Vn are obtained from solving the additional linear equations that arise from the eigen-
value equation ∆Xn+1f + λf = 0, which allows for exactly two solutions. The exact limiting
process giving rise to eigenvalues of −∆T is described by the following result.

Proposition 2.9 ([9, 21, 4]). Every solution λ ∈ R to the eigenvalue equation

∆Tu+ λu = 0 (2.5)

can be written as
λ =

3

2
lim

m→+∞
5m+cλm, (2.6)

for a sequence (λm)m>m0 and a positive integer c ∈ N0 satisfying

1. λm0 = 2 and c = 0, or λm0 = 5 and c > 1, or λm0 = 3 and c > 2;

2. λm = λm+1(5− λm+1) = RT(λm+1) for all m > m0; and

3. the limit (2.6) is finite.

Conversely, the limit of every such sequence gives rise to a solution of (2.5).

We remark that equivalently, the sequence (λm)m>m0 could be described recursively as
λm+1 = Sεm,T(λm) where εm ∈ {±1} for m > m0. The finiteness of the limit (2.6) is
equivalent to there being an m′ > m0 such that εm = −1 for all m > m′.

2.4 Spectrum of the Laplacian for Sierpiński lattices
For a Sierpiński lattice, we define the Laplacian ∆L by

(∆Lf)(x) = sx
∑
y∼x

(f(y)− f(x))

with

sx =

{
2 if x is a boundary point,
1 if x is not a boundary point,

which is a well-defined and bounded operator from `2(V∞) to itself (this follows from the fact
that each vertex of L has at most 4 neighbours).
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Figure 4: The Pascal graph.

Remark 2.10. We note that our definition of V∞ and L depended on the choice of a sequence
(ωn)n∈N, and graphs resulting from different sequences are typically not isometric [31, Lemma
2.3(ii)]. On the other hand, the spectrum σ(−∆L) turns out to be independent of this choice
(see [31, Remark 4.2] or [26, Proposition 1]).

The operator−∆L : `2(V∞)→ `2(V∞) has a more complicated spectrum which depends
on the following definition.

Definition 2.11 (cf. [8]). We define the Julia set associated toRT to be the smallest non-empty
closed set JT ⊂ [0, 5] such that

JT = S−1,T(JT) ∪ S+1,T(JT).

This leads to the following description of the spectrum σ(−∆L).

Proposition 2.12 ([31, Theorem 2]). The operator−∆L on `2(V∞) is bounded, non-negative
and self-adjoint and has spectrum

σ(−∆L) = JT ∪

(
{6} ∪

∞⋃
n=0

R−n({3})

)
.

This immediately leads to the following.

Corollary 2.13. We have that dimH(σ(−∆L)) = dimH(JT).

Thus estimating the Hausdorff dimension of the spectrum σ(−∆L) is equivalent to esti-
mating that of the Julia set JT . The following provides a related application.

Example 2.14 (Pascal graph). Consider the Pascal graph P [18], which is an infinite 3-regular
graph, see Figure 4. Its edges graph is the Sierpiński lattice L, and as was shown by Quint
[18], the spectrum σ(−∆P) of its Laplacian −∆P is the union of a countable set and the Julia
set of a certain polynomial (affinely) conjugated to RT . From this we deduce that

dimH(σ(−∆P)) = dimH(JP) = dimH(JL) = dimH(σ(−∆L)),

which we estimate in Theorem 1.4.
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2.5 Spectrum of the Laplacian for infinite Sierpiński gaskets
We finally turn to the case of an infinite Sierpiński gasket T∞. The Laplacian ∆T∞ is an oper-
ator with a domain in L2(T∞, µ∞). Here µ∞ is the natural measure on T∞, whose restriction
to T equals µ, and such that any two isometric sets are of equal measure (see [31]).

Remark 2.10 applies almost identically also to the Sierpiński gasket case: T∞ depends
non-trivially on the choice of a sequence ω in its definition, and different sequences typically
give rise to non-isometric gaskets, with the boundary of T∞ empty if and only if ω is eventually
constant [31, Lemma 5.1]. The spectrum σ(−∆T∞), however, is independent of ω (even if the
spectral decomposition is not, see [31, Remarks 5.4] or [26, Proposition 1]). Using the notation

R(z) = lim
n→∞

5n(S−1,T)n(z),

we have the following result on the spectrum σ(−∆T∞).

Proposition 2.15 ([31, Theorem 4]). The operator −∆T∞ is an unbounded self-adjoint op-
erator from a dense domain in L2(T∞, µ∞) to L2(T∞, µ∞). Its spectrum is σ(−∆T∞) =
J∞ ∪ Σ∞3 with

J∞ =

∞⋃
n=−∞

5nR(JT) and Σ∞3 =

∞⋃
n=−∞

5nR(Σ3),

where Σ3 =
⋃∞
n=0R

−n({3}).

A number of generalizations of this result for other unbounded nested fractals have been
proved, see e.g. [25, 27]. The proposition immediately yields the following corollary.

Corollary 2.16. We have that dimH(σ(−∆T∞)) = dimH(JT).

Thus estimating the Hausdorff dimension of the spectrum σ(−∆T∞) is again equivalent to
estimating the Hausdorff dimension of the Julia set JT .

3 Related results for other gaskets and lattices
In this section we describe other examples of fractal sets to which the same approach can be
applied. In practice the computations may be more complicated, but the same basic method
still applies.

3.1 Higher-dimensional infinite Sierpiński gaskets
Let d > 2 and Ti : Rd → Rd be contractions defined by

Ti(x1, . . . , xd) =
(x1

2
, . . . ,

xd
2

)
+

1

2
ei, for i = 1, . . . , d,

where ei is the ith coordinate vector. The d-dimensional Sierpiński gasket Td ⊂ Rd is the
smallest non-empty closed set such that

Td =
d⋃
i=1

Ti(T
d).
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In [21], the analogous results are presented for the spectrum of the Laplacian ∆Td associ-
ated to the corresponding Sierpiński gasket Td ⊂ Rd in d dimensions (d > 3).

Definition 3.1. For a sequence (ωn)n∈N ⊂ {1, . . . , d}N we can define an infinite Sierpiński
gasket in d dimensions as

Td,∞ =
∞⋃
n=1

T−1ω1
◦ · · · ◦ T−1ωn

(Td).

As before, we can associate a Julia set JTd and consider its Hausdorff dimension dimH(JTd).
More precisely, in each case, we can consider the decimation polynomial RTd : [0, 3 +d]→ R
defined by

RTd(x) = x((3 + d)− x),

with two local inverses S±1,Td : [0, 3 + d]→ [0, 3 + d] given by

Sε,Td(x) =
1

2

(
3 + d+ ε

√
9 + 6d+ d2 − 4x

)
with ε = ±1.

Let JTd ⊂ [0, 3 + d] be the limit set of these two contractions, i.e., the smallest non-empty
closed set such that

JTd = S−1,Td(JTd) ∪ S+1,Td(JTd).

Theorem 3.2. The Hausdorff dimension dimH(JTd) of the Julia set JTd for d ∈ {2, . . . , 10}
associated to the Sierpiński gasket in d dimensions is given by the values in Table 1, accurate
to the number of decimals stated.

d dimH(JTd)
2 0.55161856837246 . . .
3 0.45183750018171 . . .
4 0.39795943979056 . . .
5 0.36287714809375 . . .
6 0.33770271892130 . . .
7 0.31850809575800 . . .
8 0.30324865557723 . . .
9 0.29074069840192 . . .

10 0.28024518050407 . . .

Table 1: The Hausdorff dimension of JTd for 2 6 d 6 10.

The proof uses the same algorithmic method as that of Theorem 1.4, see Section 4.

Remark 3.3. By arguments developed in [9] and [26], one can deduce that similarly to Propo-
sition 2.15 and Corollary 2.16, the Hausdorff dimensions of the spectrum of the appropriately
defined Laplacian on Td,∞ and the Julia set dimH(JTd) coincide.

10



We can observe empirically from the table that the dimension decreases as d→ +∞. The
following simple lemma confirms that limd→+∞ dimH(JTd) = 0 with explicit bounds.

Lemma 3.4. As d→ +∞ we can bound

log 2

log(d+ 3)
6 dimH(JTd) 6

2 log 2

log(d+ 3) + log(d− 1)
.

Proof. We can write

I1 := R−1
Td ([0, 3 + d]) ∩

[
0,

3 + d

2

]
=

[
0,

3 + d

2

(
1−

√
1− 4

3 + d

)]
.

Thus for x ∈ I1 we have bounds√
(3 + d)(d− 1) 6 |R′Td(x)| 6 3 + d.

Similarly, we can define I2 := R−1
Td ([0, 3 + d]) ∩

[
3+d
2 , 3 + d

]
and obtain the same bounds on

|R′
Td(x)| for x ∈ I2. In particular, we can then bound

log 2

log(3 + d)
6 dimH(JTd) 6

2 log 2

log(3 + d) + log(d− 1)
.

3.2 Post-critically finite self-similar sets
The method of spectral decimation used for the Sierpiński gasket by Fukushima and Shima
[9], was extended by Shima [28] to post-critically finite self-similar sets and thus provided a
method for analyzing the spectra of their Laplacians.

Definition 3.5. Let Σ = {1, . . . , k}Z+ be the space of (one-sided) infinite sequences with the
Tychonoff product topology, and σ the usual left-shift map on Σ.

Let T1, . . . , Tk : Rd → Rd be contracting similarities and let X be the limit set, i.e., the
smallest closed subset with X =

⋃k
i=1 Ti(X). Let π : Σ → X be the natural continuous map

defined by
π ((wn)∞n=0) = lim

n→+∞
Tw0Tw1 · · ·Twn(0).

We say that X is post-critically finite if

#

( ∞⋃
n=0

σn {(wn) ∈ Σ : π(wn) ∈ K}

)
< +∞

where K =
⋃
i 6=j TiX ∩ TjX.

The original Sierpiński triangle T is an example of a limit set which is post-critically finite.
So is the following variant on the Sierpiński triangle.

Example 3.6 (SG3 gasket). We can consider the Sierpiński gasket SG3 (see Figure 5) which
is the smallest non-empty closed set XSG3 such that XSG3 =

⋃6
i=1 TiXSG3 where

Tj(x, y) = pj +
(x

3
,
y

3

)
for j = 1, . . . , 6,
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Figure 5: The first two graphs for SG3 (left, centre) and the SG3 gasket (right).

1 2 3 4 5 6

-2

0

2

4

6

8

10

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 6: The function RSG3(x) and the four contracting inverse branches for the SG3 gasket.

with

p1 = (0, 0), p2 =

(
1

3
, 0

)
, p3 =

(
2

3
, 0

)
, p4 =

(
1

6
,

1

2
√

3

)
, p5 =

(
1

2
,

1

2
√

3

)
, p6 =

(
1

3
,

1√
3

)
.

In this case we can associate the decimation rational function RSG3 : [0, 6]→ [0, 6] given by

RSG3(x) =
3x(5− x)(4− x)(3− x)

14− 2x
,

for which there are four local inverses Sj,SG3 (for j = 1, 2, 3, 4) [7], see Figure 6. The
associated Julia set JSG3 , which is the smallest non-empty closed set such that JSG3 =⋃4
j=1 Sj,SG3(JSG3), has Hausdorff dimension dimH(JSG3).

Using Mathematica with a sufficiently high precision setting (see Example 4.4 for more
details) we can numerically compute the Hausdorff dimension of the Julia set JSG3 associated
to the Sierpiński gasket SG3 to be

dimH(JSG3) = 0.617506301862352229042494874316407096341976 . . .

Example 3.7 (Vicsek graph). The Vicsek set XV is the smallest non-empty closed set such
that XV =

⋃5
j=1 Tj(XV) where

Tj(x, y) = pj +
(x

3
,
y

3

)
for j = 1, . . . , 5,

with

p1 = (0, 0), p2 =

(
2

3
, 0

)
, p3 =

(
2

3
,
2

3

)
, p4 =

(
0,

2

3

)
, p5 =

(
1

3
,
1

3

)
.
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In this case, studied in [20, Example 6.3], one has that RV : [−1, 0]→ R is given by

RV(z) = z(6z + 3)(6z + 5),

with three inverse branches S1, S2, S3 : [−1, 0]→ [−1, 0] given by

S1(x) =
1

36

(
i(
√

3 + i)t(x)− 19(1 + i
√

3)

t(x)
− 16

)
,

S2(x) =
1

36

(
−i(
√

3− i)t(x)− 19(1− i
√

3)

t(x)
− 16

)
,

S3(x) =
1

18

(
t(x) +

19

t(x)
− 8

)
,

where t(x) =
(
9 · (81x2 + 56x− 75)1/2 + 81x+ 28

)1/3
. The associated Julia set JV is the

smallest non-empty closed set such that JV =
⋃3
j=1 Sj,V(JV). The following theorem is proved

similarly to Theorem 1.4, as described in Section 4.

Theorem 3.8. The Hausdorff dimension of the Julia set JV is

dimH(JV) = 0.49195457005266 . . . ,

accurate to the number of decimals stated.

Remark 3.9. Analogously to the case of the Sierpiński lattice L, we can define lattices LSG3

and LV for the SG3 and Vicsek sets from the previous two examples, as well as corresponding
graph Laplacians ∆LSG3

and ∆LV
. The Hausdorff dimensions of their spectra can again be

directly related to those of the respective Julia sets JSG3 and JV. By [20, Theorem 5.8], one has
that JSG3 ⊆ σ(−∆LSG3

) ⊆ JSG3 ∪DSG3 and JV ⊆ σ(−∆LV
) ⊆ JV ∪DV, where DSG3 and

DV are countable sets. It follows, analogously to Corollary 2.13, that dimH(σ(−∆LSG3
)) =

dimH(JSG3) and dimH(σ(−∆LV
)) = dimH(JV).

Remark 3.10. Other examples to which the same method could be applied include the modi-
fied Koch curve (see [19], [15]) for which the associated rational function is R(x) = 9x(x −
1)(x− 4

3)(x− 5
3)/(x− 3

2). More families of such examples can be found in [32].

Remark 3.11. The spectral decimation method can also apply to some non-post-critically
finite examples, such as the diamond fractal [14], for which the associated polynomial is
R(x) = 2x(2 + x). On the other hand, there are symmetric fractal sets which do not ad-
mit spectral decimation, such as the pentagasket, as studied in [1].

4 Dimension estimate algorithm for Theorem 1.4
This section is dedicated to finishing the proof of Theorem 1.4, by describing an algorithm
yielding estimates (with rigorous error bounds) for the values of the Hausdorff dimension.

By the above discussion we have reduced the estimation of the Hausdorff dimensions of
σ(−∆L) and σ(−∆T∞) to that of dimH(JT) for the limit set JT associated to S±1,T from (2.4)
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(and similarly for the other examples). Unfortunately, since the maps S±1,T are non-linear it
is not possible to give an explicit closed form for the value dimH(σ(−∆T)) = dimH(JT).
Recently developed simple methods make the numerical estimation of this value relatively
easy to implement, which we summarize in the following subsections.

4.1 A functional characterization of dimension
Let B = C(I) be the Banach space of continuous functions on the interval I = [0, 5] with the
norm ‖f‖∞ = supx∈I |f(x)|.

Definition 4.1. Let Lt (for t > 0) be the transfer operator defined by

Ltf(x) = |S′−1,T(x)|tf(S−1,T(x)) + |S′+1,T(x)|tf(S+1,T(x))

where f ∈ B and x ∈ I , and S±,T are as in (2.4).

It is well known that the transfer operator Lt (for t > 0) is a well-defined positive bounded
operator from B to itself. To make use of the results in the previous sections, we employ the
following “min-max method” result:

Lemma 4.2 ([17]). Given choices of 0 < t0 < t1 < 1 and strictly positive continuous func-
tions f, g : I → R+ with

inf
x∈I

Lt0f(x)

f(x)
> 1 and sup

x∈I

Lt1g(x)

g(x)
< 1, (4.1)

then t0 < dimH(JT) < t1.

Proof. We briefly recall the proof. We require the following standard properties.

1. For any t > 0 the operator Lt has a maximal positive simple eigenvalue eP (t) (with
positive eigenfunction), where P is the pressure function [23, 16].

2. P : R+ → R is real analytic and convex [23].

3. The value t = dim(JT) is the unique solution to P (t) = 0, see [5, 24].

By property 1. and the first inequality in (4.1) we can deduce that

P (t0) = lim
n→+∞

1

n
log ‖Lnt0f‖∞ > 0. (4.2)

By property 1. and the second inequality in (4.1) we can deduce that

P (t1) = lim
n→+∞

1

n
log ‖Lnt1g‖∞ < 0. (4.3)

Comparing properties 2. and 3. with (4.2) and (4.3), the result follows.
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4.2 Rigorous verification of minmax inequalities
Next, we explain how we rigorously verify the conditions of Lemma 4.2 for a function f : I →
R+, that is,

1. f > 0,

2. infx∈I h(x) > 1 or supx∈I h(x) < 1 for h(x) := (Ltf)(x)/f(x).

In order to obtain rigorous results we make use of the arbitrary precision ball arithmetic library
Arb [11], which for a given interval [c−r, c+r] and function f outputs an interval [c′−r′, c′+r′]
such that f([c− r, c+ r]) ⊆ [c′ + r′, c′ − r′] is guaranteed. Clearly, the smaller the size of the
input interval, the tighter the bounds on its image. Thus, in order to verify the above conditions
we partition the interval I adaptively using a bisection method up to depth k ∈ N0 into at most
2k subintervals, and check these conditions on each subinterval. While the first condition is
often immediately satisfied for chosen test functions f on the whole interval I , the second
condition is much harder to check as h is very close to 1 and would require very large depth k.

To counteract the exponential growth of the number of required subintervals, we use tighter
bounds on the image of h. Clearly for x ∈ [c − r, c + r] with c ∈ R and r > 0, we have that
|h(x)−h(c)| 6 supy∈[c−r,c+r] |h′(y)|r by the mean value theorem. More generally, we obtain
for p ∈ N that

|h(x)− h(c)| 6
p−1∑
i=1

|h(i)(c)|ri + sup
y∈[c−r,c+r]

|h(p)(y)|rp.

This allows to achieve substantially tighter bounds on h([c− r, c+ r]) while using a moderate
number of subintervals, at the cost of additionally computing the first p derivatives of h.

4.3 Choice of f and g via an interpolation method
Here we explain how to choose suitable functions f and g for use in Lemma 4.2, so that given
candidate values t0 < t1 we can confirm that t0 < dimH(JT) < t1. Clearly, if f and g are
eigenfunctions of Lt0 and Lt1 for the eigenvalues λt0 and λt1 , respectively, then condition
(4.2) is easy to check. As these eigenfunctions are not known explicitly, we will use the
Lagrange-Chebyshev interpolation method to approximate the respective transfer operators by
finite-rank operators of rank m, and thus obtain approximations f (m) and g(m) of f and g.
As the maps S±1,T involved in the definition of the transfer operator (Definition 4.1) extend
to holomorphic functions on suitable ellipses, Theorem 3.3 and Corollary 3 of [3] guarantee
that the (generalized) eigenfunctions of the finite-rank operator converge (in supremum norm)
exponentialy fast in m to those of the transfer operator. In particular, for large enough m the
functions f (m) and g(m) are positive on the interval I and are good candidates for Lemma 4.2.
Initial choice of m. We first make an initial choice of m > 1. Let `n : I → R (for n =
0, . . . ,m − 1) denote the Lagrange polynomials scaled to [0, 5] and let xn ∈ [0, 5] (for n =
0, . . . ,m− 1) denote the associated Chebyshev points.
Initial construction of test functions. Let vt = (vti)

m−1
i=0 be the left eigenvector for the

maximal eigenvalue of the m×m matrix3 Mt(i, j) = (Lt`i)(xj) (for 0 6 i, j 6 m− 1) and

3A fast practical implementation of this requires a slight variation [3, Algorithm 1], which can be implemented
using a discrete cosine transform.
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set

f (m) :=
m−1∑
i=0

vt0i `i and g(m) :=
m−1∑
i=0

vt1i `i.

If the choices f = f (m) and g = g(m) satisfy the hypotheses of Lemma 4.2 (which can be
checked rigorously with the method in the previous section) then we proceed to the next step.
If they do not, we increase m and try again.

Conclusion. When the hypothesis of Lemma 4.2 holds then its assertion confirms that t0 <
dimH(JT) < t1.

It remains to iteratively make the best possible choices of t0 < t1 using the following
approach.

4.4 The bisection method
Fix ε > 0. We can combine the above method of choosing f and g with a bisection method to
improve given lower and upper bounds t0 and t1 until the latter are ε-close:

Initial choice. First we can set t(1)0 = 0 and t(1)1 = 1, for which t(1)0 < dimH(JT) < t
(1)
1 is

trivially true.

Iterative step. Given n > 0 we assume that we have chosen t(n)0 < t
(n)
1 . We can then set

T = (t
(n)
0 + t

(n)
1 )/2 and proceed as follows.

(i) If t(n)0 < dimH(JT) < T then set t(n+1)
0 = t

(n)
0 and t(n+1)

1 = T .

(ii) If T < dimH(JT) < t
(n)
1 then set t(n+1)

0 = T and t(n+1)
1 = t

(n)
1 .

(iii) If dimH(JT) = T then we have the final value.4

Final choice. Once we arrive at t(n)1 − t(n)0 < ε then we can set t0 = t
(n)
0 and t1 = t

(n)
1 as the

resulting upper and lower bounds for the true value of dimH(JT).

Applying this algorithm yields the proof of Theorem 1.4 (and with the obvious modifica-
tions also those of Theorems 3.2 and 3.8). Specifically, we computed the value of dimH(JT)
efficiently to the 14 decimal places as stated with the above method, by setting ε = 10−15,
using finite-rank approximation up to rank m = 30, running interval bisections for rigorous
minmax inequality verification up to depth k = 18, i.e. using up to 218 subintervals, and using
p = 2 derivatives. There are of course many ways to improve accuracy further, e.g., with more
computation or the use of higher derivatives.

Example 4.3 (Sierpiński triangle). To cheaply obtain a more accurate estimate (albeit without
the rigorous guarantee resulting from the use of ball arithmetic), we use the MAXVALUE

routine from Mathematica. To get an estimate on dimH(JT) to 60 decimal places, we work
with 100 decimal places as Mathematica’s precision setting. Taking m = 60 we use the

4In practical implementation, the case (iii) is of no relevance, and the only meaningful termination condition is
given by t1 − t0 < ε.
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bisection method and starting from an interval [0.2, 0.8] after 199 iterations we have upper and
lower bounds t0 6 dimH(JT) 6 t1, where

t0 =0.5516185683724609316975708723135206545360797417440422

082662966000504800341581203344828264869391054705

and
t1 =0.5516185683724609316975708723135206545360797417440422

082662980935741467208321300490581993941689232122.

With a little more computational effort (200 decimals of precision, m = 100, 329 itera-
tions) we can improve the estimate to 100 decimal places:

t0 =0.55161856837246093169757087608456543417211766450713

88681168316991686668142241904865834395086581396924

80473399364569014861603996382396316337795734913712

92389795501216939500532891268573684698907908711334

and
t1 =0.55161856837246093169757087608456543417211766450713

88681168316991686668142241904865834395086581396926

63351381969733012016129364111250869850101334085360

70969237514708581622707399079704491867257671463809,

which yields the estimate:

dimH(JT) = 0.5516185683724609316975708760845654341721176

6450718868116831699168666814224190486583439508658139692 . . . .

We next consider as a second example, SG3, see Example 3.6.

Example 4.4 (SG3 gasket). With the same method as in the previous example, we estimate
bounds on dimH(JSG3) to 60 decimal places:

t0 =0.6175063018623522290424948743164070963419768663609616

039516140619156598666691050499356772905041875773

and
t1 =0.6175063018623522290424948743164070963419768663609616

039516151934758805391761943498290334758478481658,

which yields the estimate:

dimH(JSG3) = 0.617506301862352229042494874316

40709634197686636096160395161 . . .

Remark 4.5. A significant contribution to the time complexity of the algorithm is that of
estimating the top eigenvalue and corresponding eigenvector of an m × m matrix which is
O(n ·m2) with n denoting the number of steps of the power iteration method. Moreover, by
perturbation theory one might expect that in order to get an error in the eigenvector of ε > 0
one needs to choose m = O(log(1/ε)) and n = O(log(1/ε)).
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5 Conclusion
In this note, we have leveraged the existing theory on Laplacians associated to Sierpiński lat-
tices, infinite Sierpiński gaskets and other post-critically finite self-similar sets, in order to
establish the Hausdorff dimensions of their respective spectra. We used the insight that, by
virtue of the iterative description of these spectra, these dimensions coincide with those of the
Julia sets of certain rational functions. Since the contractive local inverse branches of these
functions are non-linear, the values of the Hausdorff dimensions are not available in an explicit
closed form, in contrast to the dimensions of the (infinite) Sierpiński gaskets themselves, or
other self-similar fractals constructing using contracting similarities and satisfying an open set
condition. Therefore we use the fact that the Hausdorff dimension can be expressed implicitly
as the unique zero of a so-called pressure function, which itself corresponds to the maximal
positive simple eigenvalue of a family of positive transfer operators. Using a min-max method
combined with the Lagrange-Chebyshev interpolation scheme we can rigorously estimate the
leading eigenvalues for every operator in this family. Combined with a bisection method we
then accurately and efficiently estimate the zeros of the respective pressure functions, yield-
ing rigorous and effective bounds on the Hausdorff dimensions of the spectra of the relevant
Laplacians.
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