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Abstract

For a class of one-dimensional expanding maps we relate the two fundamental

notions in the theory of dynamical systems: sensitivity to initial conditions (quantified

by Lyapunov exponent or entropy) and mixing (measured via decay of correlation

functions). More precisely, for piecewise linear expanding Markov maps on the interval

observed via piecewise analytic functions, we show that the Lyapunov exponent Λ

provides a barrier to the exponential rate of mixing, by establishing a lower bound on

the subleading eigenvalue λ2 of the transfer operator via |λ2| ≥ e−2Λ.

Motivated by the question whether a similar bound in terms of the Lyapunov

exponent can be obtained in the nonlinear setting, we construct a family of expanding

maps for which the entire spectrum of the associated transfer operator is explicitly

known. In particular, for any λ ∈ C with |λ| < 1 we construct an analytic expanding

circle map such that the eigenvalues of the associated transfer operator (acting on

holomorphic functions) are precisely the nonnegative powers of λ and λ. Considered

on the interval, these maps provide counterexamples to an old conjecture on the reality

of spectra.

These examples belong to a special class of circle maps arising from finite Blaschke

products. Their analytic features allow us to determine the entire spectrum of the

associated transfer operators (on spaces of holomorphic functions) in terms of multipli-

ers of attracting fixed points. This is achieved by deriving a natural representation of

the respective adjoint operators in terms of certain composition operators. Using this

explicit spectral information we then obtain examples of nonlinear expanding interval

maps with arbitrarily fast exponential mixing but bounded Lyapunov exponent.
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Introduction

Chaos is the apparent randomness of a deterministic time-evolving system giving

rise to motion too complicated to predict reliably. Measuring the strength of chaos

amounts to quantifying the rate at which our uncertainty of prediction grows as we

expand the time horizon.

The theory of dynamical systems provides a mathematical framework to study

the behaviour of systems evolving in time. From an abstract perspective, a determin-

istic dynamical system is a set of states, usually referred to as the phase space of the

system, equipped with an evolution law, describing the temporal transitions between

these states. Even a simple evolution law can generate rather complicated behaviour,

and make the system appear chaotic. Although there is no universally accepted math-

ematical definition of chaos, this notion is commonly used to describe deterministic

systems demonstrating behaviour similar to purely random systems.

The source of chaotic motion is often attributed to sensitive dependence on ini-

tial conditions. Any uncertainty in the initial conditions risks being (exponentially)

magnified, so that two initially arbitrarily close points will typically head to very dif-

ferent regions of the phase space. This phenomenon is closely linked to mixing, the

concept that any set of points, no matter how small, will eventually spread uniformly

in the phase space under the evolution. In fact, it is a simple exercise to show that

(topological) mixing implies sensitive dependence on initial conditions.

In practice, this topological viewpoint is limited by the fact that the geometric

structure of individual orbits can be extremely complicated. An important break-

through in the theory of dynamical systems was the realisation (usually attributed

to Kolmogorov) that complicated behaviour can be studied from a probabilistic point

of view. In other words, instead of studying individual orbits, we want to study the

long-term behaviour of typical orbits, where ‘typical’ is understood with respect to

some dynamically relevant (invariant) measure. This is the setting of ergodic theory:

the study of statistical properties of dynamical systems relative to a measure on the

underlying space.

The measure-theoretic notions quantifying the degree of ‘chaoticity’ corresponding

to the notions of sensitivity and topological mixing are Lyapunov exponents andmixing

rates, respectively. The former measure the average exponential separation rate of

nearby points, whereas the latter yield the speed with which the system loses its

‘memory’ of the initial state. In practice, the actual state of the system is often

hidden, and can only be observed via certain functions of the state, the so-called
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observables. Viewed through given observables, the statistical correlation between

initial and future states is described by correlation functions. The asymptotics of

the decay of these correlation functions therefore describes the speed with which the

evolution of the system decorrelates states. In general, this speed depends on the

chosen observables, but by restricting the space of observables (by imposing a certain

regularity) it is possible to obtain a specific (for example, exponential or polynomial)

decay rate for ‘typical’ observables. This rate is also referred to as the mixing rate

and provides a measure for the degree of chaoticity.

Having two distinct quantifiers of chaoticity, it is tempting to explore whether and

how the two are related, and to what extent information on one has significance for

the other. This question is of great practical interest, as in real world experiments

correlation functions are often directly accessible from data, whereas Lyapunov expo-

nents are notoriously hard to determine. It is a common perception in the physics

literature that for chaotic low-dimensional systems exhibiting exponential decay of

correlations, the decay rate and the Lyapunov exponents are related1.

A powerful approach for the study of the decay of correlation functions consists

of reformulating the problem in terms of spectral properties of the so-called transfer

operator, also known as the (Ruelle-)Perron-Frobenius operator. This operator, origi-

nally developed in statistical mechanics [44, 71], describes how a distribution of initial

points evolves under the action of the underlying dynamics, thus providing a global

representation of a system’s dynamics. Moreover, its spectrum yields insight into the

ergodic-theoretic properties of the underlying system (see, for example, [7, 17] and

references therein). In a certain setting, provided the system is exponentially mixing,

the exponential mixing rate is determined by the size of the spectral gap of the asso-

ciated transfer operator. In most cases, it is difficult to obtain the actual value for

the exponential mixing rate, but explicit lower bounds have been obtained employing

the transfer operator in various settings [42, 51, 62, 76].

While typical observables decay with the rate given by the mixing rate, faster ex-

ponential decay can occur if one chooses (nontypical) observables, that is, observables

in certain subspaces of finite codimension. The spectrum of the transfer operator con-

tains all possible exponential rates of correlation decay, and is often referred to as the

correlation spectrum, see [20]. In a setting where the transfer operator is compact2,

its spectrum consists of isolated eigenvalues (which can accumulate at zero) together

with zero itself, and these eigenvalues precisely correspond to the possible faster decay

rates. Explicit upper bounds for the eigenvalue sequence (equivalently, lower bounds

on the respective decay rates) were obtained in [11, 12, 30] for expanding systems

in one and higher dimensions. Lower bounds on the eigenvalues are much harder to

obtain, see however [63, 64].

1In [86] it was even suggested to take correlation decay rates as meaningful estimates for Lyapunov
exponents.
2For analytic expanding maps Ruelle [72] was the first to show compactness of the associated transfer
operator when acting on certain spaces of holomorphic functions.
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To illustrate the main questions presented in this work, let us first look at the

well-known doubling map x #→ 2x mod 1 on the interval, the ergodic properties of

which are fully understood. For analytic observables, the spectrum of the associated

transfer operator consists of the eigenvalues (1/2)k for k ∈ N0 together with 0; thus the

exponential mixing rate coincides with the Lyapunov exponent given by ln(2). Clearly,

an equality of this type cannot hold for general exponentially mixing interval maps, as

it is easy to construct simple maps with finite Lyapunov exponent but arbitrarily slow

mixing rate (see, for example, [38]). However, it remains a valid question whether,

conversely, there is a barrier for the speed of mixing in terms of the Lyapunov exponent

for a meaningful class of exponentially mixing interval maps. More generally, one can

ask whether there are interval maps (with a bounded number of smooth monotone

branches) with arbitrarily large exponential mixing rate.

A wider range of questions emerges, if one observes that the ‘same’ map viewed

on the circle, that is, the map z #→ z2, is superexponentially mixing for analytic

observables, as the spectrum of the associated transfer operator is the two-point set

{0, 1}. One can then pose the question whether there are exponentially mixing circle

maps with countably many nonzero eigenvalues in the spectrum of the corresponding

transfer operator (as, for example, for the doubling map on the interval).

Motivated by the above, this thesis makes a contribution towards the understand-

ing and explicit determination of possible exponential mixing rates and their relation

with Lyapunov exponents, in the setting of expanding one-dimensional maps.

Chapter 1 is devoted to setting up a mathematical framework by introducing the

relevant concepts and discussing the relations between mixing, correlation decay and

the spectral properties of transfer operators, with a particular emphasis on a suitable

choice of spaces of analytic observables. Some background material on spectral theory

and a few technical proofs are deferred to the appendix.

In Chapter 2 we tackle the question of a possible relation between the two measures

of chaoticity, Lyapunov exponents and mixing rates, in the setting of one-dimensional

maps. More specifically, for piecewise linear expanding Markov maps observed via

piecewise analytic functions, we show that the exponential mixing rate is bounded

above by twice the Lyapunov exponent, that is, we establish lower bounds for the

subleading eigenvalue of the corresponding transfer operator. In the proof we make

use of the generalised transfer operator and the properties of topological pressure.

We conclude the chapter by presenting numerical results suggesting that this bound

cannot be expected to hold for nonlinear maps.

In view of the question whether this bound can be modified to hold in the nonlinear

setting, we set out in Chapter 3 to construct a (nonlinear) expanding interval map

the transfer operator of which has a prescribed eigenvalue and eigenfunction. It turns

out that this construction yields a family of analytic expanding circle maps, for which

the entire correlation spectrum can be determined explicitly using a suitable matrix

representation of the associated transfer operator. In particular, for any λ ∈ C with
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|λ| < 1 we obtain a circle map with correlation spectrum on the space of analytic

observables consisting precisely of all nonnegative powers of λ and λ together with 0.

These are the first examples of analytic circle maps with explicitly known nontrivial

correlation spectra on the space of analytic functions. Moreover, viewed as interval

maps, these maps provide counterexamples to a weak variant of a conjecture of Mayer

on the reality of spectra.

The aim of Chapter 4 is to reveal the underlying structure of transfer operators

associated to analytic expanding circle maps. For this, we first derive a natural rep-

resentation of the respective (Banach space) adjoint operators, by viewing these as

compressions of certain composition operators on spaces of holomorphic functions.

For a special class of expanding circle maps arising from finite Blaschke products, this

representation takes a particularly convenient form allowing us to deduce the entire

spectrum of the corresponding (compact) transfer operators. Interestingly, these spec-

tra are completely determined by the multipliers of the attracting fixed points of the

Blaschke products. Moreover, the family of maps constructed in Chapter 3 belong

to the class of finite Blaschke maps, and their spectra (previously computed from a

matrix representation) are now simply explained.

The explicit knowledge of correlation spectra for Blaschke products now allows

to answer questions about mixing rates and their relation to Lyapunov exponents.

We present a family of full branch expanding interval maps (with a fixed number of

branches) which exhibit arbitrarily fast exponential mixing but bounded Lyapunov

exponents.

The thesis is concluded with a short summary and a selection of open questions

following from our work.

By studying the correlation spectra for expanding one-dimensional maps we con-

tribute to clarifying the relation between dynamical sensitivity and correlation decay.

While our results indicate that a straightforward quantitative relation might not exist,

the explicit determination of the spectra makes a range of interesting questions on

possible mixing rates more accessible.



CHAPTER 1

Statistical properties of dynamical systems

This chapter sets the scene by providing background material and motivation

for the research presented in this thesis. We start by briefly recalling concepts such

as ergodicity, mixing and decay of correlations in the context of dynamical systems

(Sections 1.1–1.2). We will then focus on systems enjoying exponential decay of cor-

relations and establish the key link between the mixing rate and the spectrum of the

transfer operator (Section 1.3). Section 1.4 discusses the transfer operator acting com-

pactly on analytic function spaces and presents arguments frequently used in the later

chapters. Material presented in this chapter is well known and serves as the basis for

the chapters to follow.

1.1. Motivation: Chaos in topological dynamical systems

A discrete-time dynamical system consists of a nonempty set X and a transforma-

tion T : X → X. The dynamics arises from the iteration of T on some initial point

x ∈ X. The n-th iterate of T with n ∈ N is the n-fold composition Tn = T ◦ · · · ◦ T
and the (forward) orbit of x ∈ X is defined to be the infinite sequence (Tn(x))n∈N.

Depending on the purpose, the phase space X carries some additional structure

and may, for example, be a topological space, a measure space, or a smooth manifold.

The transformation T preserves the respective structure by being, for example, a

continuous, measurable or smooth map. Throughout this thesis we shall only be

interested in the dynamics of smooth and piecewise smooth one-dimensional maps

with X a closed interval I ⊂ R or the complex unit circle T = {z ∈ C : |z| = 1}.
A primary goal of dynamical systems theory is to understand the long-term qualita-

tive behaviour of (typical) orbits. Even in the seemingly easy setup of one-dimensional

maps, orbits might be complicated, making the system appear ‘chaotic’. While there

is no general definition of chaos (see, for example, the discussion in [67, Ch. 3.5]), a gen-

eral view is that a key ingredient for this phenomenon is sensitivity to initial conditions.

Before giving a precise definition, let us endow our dynamical system with a

topological structure. By a topological dynamical system we mean a continuous map

T : X → X on a topological space X, which for all our purposes will be a compact

metric space (X, d).

Definition 1.1.1. A topological dynamical system on a metric space (X, d) is

said to have sensitive dependence on initial conditions if there is an ε > 0 such that

for every x ∈ X and δ > 0 there are y ∈ X with d(x, y) < δ and n ∈ N such that

d(Tn(x), Tn(y)) > ε.
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Another phenomenon associated with chaotic motion is mixing, which, in the

topological setting, is defined in the following way.

Definition 1.1.2. A topological dynamical system is said to be topologically

mixing if for any nonempty open sets U and V there exists an n0 ≥ 1 such that

Tn(U) ∩ V ̸= ∅ for all n ≥ n0.

It is straightforward to relate the above notions in the following way.

Lemma 1.1.3. Let T : X → X be a topological dynamical system on a compact

metric space (X, d) consisting of more than one point. Then,

topological mixing ⇒ sensitive dependence on initial conditions.

Proof. Let T be topologically mixing and pick two distinct points x1, x2 ∈ X

and ε < d(x1, x2)/4. Then, for every open ball U = B(x, δ) around x ∈ X with

radius δ, there is an n such that Tn(U) ∩ V1 ̸= ∅ and Tn(U) ∩ V2 ̸= ∅, where

V1 = B(x1, ε) and V2 = B(x2, ε). Hence, there are y1, y2 ∈ U with Tn(y1) ∈ V1

and Tn(y2) ∈ V2. Clearly, these satisfy d(Tn(y1), Tn(y2)) > 2ε. It follows that

max {d(Tn(x), Tn(y1)), d(Tn(x), Tn(y2))} > ε. !

Going beyond the topological nature of the above lemma, it is tempting to ask

for a more precise, quantitative relation between sensitive dependence and mixing.

In particular, we want to explore in which way Lyapunov exponents (providing a

quantitative measure for sensitive dependence) are related to mixing rates. Both

notions require a measure-theoretical formulation, which will be introduced in the

next section.

1.2. Lyapunov exponent, mixing and decay of correlations

Background on measure theory and probability theory can be found in [36]. We

shall briefly recall the basic notions from ergodic theory. For a full introduction see,

for example, the excellent book [92].

A probability space (X,B, µ) is given by a set X, a probability measure µ and a

σ-algebra B of µ-measurable subsets. To any such measure space one can associate

the Banach spaces Lp(X,µ) = {f : X → C :
∫

X |f |p dµ < ∞} with p ≥ 1, and

L∞(X,µ) the space of complex-valued essentially bounded measurable functions, with

the usual respective norms ∥·∥p. A transformation T : X → X is measurable if B ∈ B
implies T−1(B) ∈ B. A measurable transformation T : X → X is called nonsingular

if µ(T−1(B)) = 0 whenever µ(B) = 0 for B ∈ B, and it is called measure-preserving

(or equivalently µ is T -invariant) if µ(T−1(B)) = µ(B) for all B ∈ B. Finally, a

measure-preserving transformation T (or the T -invariant measure µ) is called ergodic

if µ(B) = 0 or 1 for any set B ∈ B with µ(T−1(B)△ B) = 0. This definition implies

that an ergodic system is irreducible, in the sense that it is impossible to subdivide

the phase space into smaller parts on which the system can be studied separately.
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The first major result in ergodic theory is the famous Birkhoff ergodic theorem,

which asserts that asymptotic time averages exist for almost every point with respect

to an invariant measure µ and coincide with the space average, provided µ is ergodic.

Theorem 1.2.1 (Birkhoff, 1931). Let T : X → X be measure-preserving on a

probability space (X,B, µ), and f ∈ L1(X,µ). Then there is f∗ ∈ L1(X,µ) such that

(1/n)
∑n−1

k=0 f(T
k(x)) converges to f∗(x) for µ-a.e.1 x as n → ∞. Moreover, if µ is

ergodic, then f∗(x) =
∫

X f dµ for µ-a.e. x.

Returning to the original goal of obtaining a quantitative version of Lemma 1.1.3,

we introduce the Lyapunov exponent as a measure for sensitive dependence. If T is a

differentiable map on X, where X is an interval or circle, then the pointwise Lyapunov

exponent of a point x ∈ X, if it exists, measures the exponential expansion rate along

the orbit of x and is defined as

Λx = lim
n→∞

1

n
ln |(Tn)′(x)|. (1.1)

Let µ be a T -invariant ergodic measure and assume that ln |T ′| ∈ L1(X,µ), then

Birkhoff’s ergodic theorem implies that this limit exists and is the same for µ-almost

every x, as

Λx = lim
n→∞

1

n
ln |(Tn)′(x)| = lim

n→∞

1

n

n−1
∑

i=0

ln |T ′(T i(x))| =
∫

X
ln |T ′| dµ. (1.2)

We then simply write Λ = Λx for the Lyapunov exponent with respect to µ.

However, a given system may have many ergodic invariant measures which lack

physical significance, meaning they do not characterise a sufficiently large set of points,

or more formally, sets with full µ-measure may have zero Lebesgue measure m, for

example, if µ is supported on a periodic orbit. Hence, one is interested in absolutely

continuous invariant probability (acip) measures with respect to Lebesgue measure,

that is µ(B) = 0 whenever m(B) = 0. By the Radon-Nikodým theorem, every acip

measure µ is uniquely determined by a nonnegative function f such that µ(B) =
∫

B f dm for any B ∈ B.
There is a large body of literature on existence (and uniqueness) of acip measures

for various dynamical systems (see [54, Ch. III] and [17, Ch. 5] for an overview). The

pioneering work in this area focussed on subshifts of finite type [15, 70], piecewise

expanding C2 interval maps [47, 77], and topologically mixing Markov maps [2, 16].

In view of Lemma 1.1.3, a suitable statistical property similar to topological mixing

is measure-theoretical mixing, or simply mixing.

Definition 1.2.2. A measure-preserving transformation T (or the T -invariant

measure µ) is mixing2 if

lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B) for all A,B ∈ B. (1.3)

1A property holds for µ-almost every (a.e.) x ∈ X if it only fails to hold on a set of zero µ-measure.
2In the literature, this notion is often referred to as strong mixing.
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Intuitively, mixing means that any small patch in the phase space is eventually

uniformly distributed in the entire phase space, in other words T−n(B) is spreading

uniformly with respect to µ.

Many systems are mixing, and indistinguishable at this level of description. To

develop finer mixing properties, we need to generalise the concept of mixing and

introduce correlation functions.

Definition 1.2.3. Given a transformation T : X → X preserving the measure µ,

the correlation function is defined as

Cf,g(n) =

∫

X
f · (g ◦ Tn) dµ−

∫

X
f dµ

∫

X
g dµ (n ∈ N), (1.4)

for some observables f ∈ L1(X,µ) and g ∈ L∞(X,µ).

If f and g are the characteristic functions of some measurable sets A and B,

then the convergence of Cf,g(n) to 0 as n → ∞ gives precisely the definition of

mixing.3 A natural question is then how fast the correlation function of a given

mixing transformation converges to zero as n → ∞. The answer critically depends

on the properties of the map T and on the regularity of the observables. In [25],

it was demonstrated that even for highly chaotic systems (in that case, hyperbolic

automorphisms of the torus with positive entropy), the decay rate can be faster than

exponential, exponential, or polynomial, depending on the choice of observables.

However, if one restrics the space of allowed observables to certain subspaces

of L1(X,µ), it is possible to obtain specific rates. There is a vast mathematical

literature on the different possible rates of mixing (for example, exponential, stretched-

exponential or polynomial) occurring for various one- and higher-dimensional systems

with different degree of expansivity or hyperbolicity, see [6] for a nice summary.

As most results in the literature concern upper bounds for the correlation function,

saying that it decays with a certain rate usually means it decays not slower than with

this rate. For the purpose of this work, we will be solely concerned with systems

exhibiting exponential decay of correlations. The system is exponentially mixing or

enjoys exponential decay of correlations on a certain subspace V ⊂ L1(X,µ) if there

is a γ ∈ (0, 1) such that for any f, g ∈ V ,

Cf,g(n) = O(γn) as n → ∞. (1.5)

Ideally, one is interested in the actual mixing rate, that is, in both upper and lower

bounds (on the rate). There is a considerable body of literature on lower bounds for

the decay rate (see, [7, 18, 42, 51, 62, 76, 78], to name but a few), but to the

best of the author’s knowledge hardly any nontrivial upper bounds exist (see however

[63], where an exponential upper bound for the decay rate of correlation functions

of suspension semiflows is given). For obtaining a quantitative version of Lemma

3Further, one can show that µ is mixing if and only if Cf,g(n) → 0 as n → ∞ for any f ∈ L1(X,µ)
and g ∈ L∞(X,µ).
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1.1.3, we will indeed require upper bounds on the rates, as we want to say that, for

any ‘typical’ observables f and g in a certain subspace of L1(X,µ), the correlation

function decays not faster than with a certain exponential rate, and relate this rate

to the Lyapunov exponent.

There are several tools available in the literature for showing exponential decay

of correlations, see [6, 7] for an overview. One of the most common approaches, and

the one we will pursue here, is a functional-analytic one, which relies on associating

to T the so-called transfer operator and investigating its spectral properties. Other

noteworthy approaches are based on Birkhoff cones [51, 91] or probabilistic coupling

methods [93].

1.3. Rates of mixing and transfer operators

Let X be an interval or the circle and T : X → X a nonsingular map with respect

to (normalised) Lebesgue measure m. One can associate to T a certain linear operator

L, known as the transfer operator, which can be defined in the following way.

Definition 1.3.1. The transfer operator L : L1(X,m) → L1(X,m) is defined by
∫

X
Lf · g dm =

∫

X
f · (g ◦ T ) dm (1.6)

for all f ∈ L1(X,m) and all g ∈ L∞(X,m).

Equation (1.6) realises the idea that the initial density f is transformed to the

density Lf under the action of the map T . For this, note that taking g = χB to

be the characteristic function of a set B ∈ B, the mass of points landing in B under

application of T is
∫

T−1(B) f dm =
∫

X f ·(χB ◦T ) dm =
∫

B Lf dm. The space L1(X,m)

is a natural choice for the domain of L, as its (normalised) nonnegative elements are

the probability densities.

Remark 1.3.2. Many authors refer to L as the Perron-Frobenius operator and

use the term ‘transfer operator’ for a more general version. For simplicity, throughout

this thesis we will always call these operators transfer operators.

Note that L is a positive bounded operator4 with ∥L∥ = 1. Its spectrum σ(L) has
a dynamical interpretation in terms of the ergodic-theoretical properties of T . The

densities of acip measures µ are exactly the probability densities that are fixed by L,
that is, eigenfunctions of L with eigenvalue 1. If such an acip measure exists and is

ergodic, then it must be unique [46, Thm. 4.2.2], meaning the geometric multiplicity

of the eigenvalue 1 is equal to 1. Moreover, its algebraic multiplicity is also5 1. Hence-

forth, we will call an eigenvalue simple if its algebraic multiplicity is 1. If, in addition,

4One can check that ∥Lf∥1 ≤ ∥f∥1 for any f ∈ L1(X,m). By positivity, meaning that f ≥ 0 implies
Lf ≥ 0, it follows that ∥Lf∥1 = ∥f∥1 for any f≥0.
5Suppose, for a contradiction, that the algebraic multiplicity is n = 2, then (I − L)2g = 0 and
(I − L)g ̸= 0 for some g. It follows that g − Lg = cϱ for some c ̸= 0, where ϱ is the density of
the unique acip measure. Integrating this equation and using

∫

X
Lf dm =

∫

X
f dm, leads to the

contradiction 0 = c
∫

ϱ dm. A similar argument applies for n > 2.
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the acip measure has density function f > 0 and is mixing, then L has exactly one

eigenvalue on the unit circle, equal to 1. See [17, Ch. 3] and [46, Ch. 4] for easily

accessible accounts of these and related facts.

Remark 1.3.3. As an aside, equation (1.6) defines the Banach space adjoint of

the transfer operator, known as the Koopman operator, defined on L∞(X,m) and

given by g #→ g ◦ T . It can be used for formulating such concepts as ergodicity and

mixing, and characterises these in terms of its spectral properties, see [46, §4.4] or
[92, §1.7].

By imposing analyticity on the map T , we will show in Chapter 4 that it is

possible to define such operators, in this context known as a composition operators, on

certain analytic function spaces. In a particular setting where the associated transfer

operator is compact, its entire spectrum will then be deduced from the spectra of

these composition operators.

Now L can be directly linked to the correlation function defined in (1.4). Through-

out this chapter, we will freely make use of facts and notions from basic spectral theory,

which are summarised in Appendix A.

For convenience, we make the following standing assumption for the rest of this

chapter.

(AS1)

Let T : X → X be nonsingular with respect to m and assume that

it possesses a unique acip measure µ with density ϱ ∈ L1(X,m)

bounded away from zero and infinity, and normalised so that
∫

X ϱ dm = 1.

Note that this implies Lp(X,m) = Lp(X,µ) for all 1 ≤ p ≤ ∞. Using the continuous

projection P : L1(X,m) → L1(X,m) given by

Pf =

(
∫

X
fdm

)

ϱ (1.7)

and Mϱ : L1(X,m) → L1(X,m) the operator of multiplication with ϱ,

Mϱf = ϱ · f, (1.8)

we can rewrite6 the correlation function (1.4) as

Cf,g(n) =

∫

X
g · (Ln − P ) (Mϱf) dm (1.9)

for all f ∈ L1(X,m) and g ∈ L∞(X,m).

6By (1.6) we have on the one hand
∫

X

f · (g ◦ Tn) dµ =

∫

X

(g ◦ Tn) · fϱ dm. =

∫

X

g · Ln(fϱ) dm,

and on the other hand
∫

X

f dµ

∫

X

g dµ =

∫

X

g

(
∫

X

fϱ dm

)

ϱ dm =

∫

X

g · P (fϱ) dm.
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1.3.1. Spectral gap implies exponential mixing. The proofs for all results

stated in this section and in Section 1.3.2 are somewhat technical, and are therefore

deferred to Appendix B.

In order to define an adequate notion of rate of correlation decay for the system

(also referred to as the mixing rate), we restrict L to certain invariant subspaces V

of L1(X,m) on which L is quasicompact7. Recall that a quasicompact operator has

essential spectral radius strictly less than its spectral radius. As we shall see, this

property will guarantee that the correlation function in (1.9) decays exponentially for

observables in V . To this end, we make the following standing assumption.

(AS2)

Let T satisfy (AS1) and let L be its associated transfer operator.

Assume that V is an L-invariant subspace, densely and continuously

embedded in L1(X,m) such that L restricted to V is quasicompact.

The following lemma summarises some well-known spectral properties of L : V →
V satisfying (AS2).

Lemma 1.3.4. Let T and V satisfy (AS2). Then the unique invariant acip density

ϱ is in V . The spectral radius of L : V → V is 1, and if additionally the acip measure is

mixing, then the only spectral point on the unit circle is 1, which is a simple eigenvalue.

Let us now define the exponential mixing rate on V . For simplicity and as it

encompasses all the settings considered in this thesis, we assume V to be a subspace

of L∞(X,m).

Definition 1.3.5. Let T and V satisfy (AS2) with V a subspace of L∞(X,m).

The exponential rate of mixing on V is defined as

αV = − ln sup

{

lim sup
n→∞

|Cf,g(n)|1/n : f, g ∈ V

}

. (1.10)

We are now in a position to establish the key connection between the exponential

mixing rate on V and the spectrum of the operator L. The assumption that L
restricted to V is quasicompact guarantees exponential mixing, that is αV > 0.

Proposition 1.3.6. Let T and V satisfy (AS2) with V a subspace of L∞(X,m),

and Mϱ(V ) ⊆ V . Additionally, assume that the unique acip measure is mixing. Sup-

pose that L : V → V is quasicompact. Then

αV ≥ − ln sup{|λ| : λ ∈ σ(L) \ {1}} > 0.

In certain cases8, in particular in those relevant for this work (when L is compact

or V is the space of bounded variation), the mixing rate αV is exactly determined by

the size of the spectral gap of L : V → V , that is

αV = − ln sup{|z| : z ∈ σ(L) \ {1}}. (1.11)

7Note that usually L is not quasicompact on L1(X,m).
8For V satisfying (AS2), and assuming that Mϱ(V ) = V and that there exists a sequence (λn)n∈N

of eigenvalues of L : V → V such that limn→∞ |λn| = sup{|z| : z ∈ σ(L) \ {1}} (see, for example, [7,
Thm. 1.5 and 2.5] or [22]), one can show that αV ≤ − ln sup{|z| : z ∈ σ(L) \ {1}}.
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This implies that

αV = − lnmax{|λ2(L)|, ρess(L)},

where λ2(L) is the second largest eigenvalue of L in modulus, and ρess(L) is the

essential spectral radius of L. The proof of (1.11) depends on the space V , and will

be provided in the next section in the case of compact L : V → V (which implies

ρess(L) = 0).

1.3.2. Beyond the spectral gap. The size of the spectral gap, governed either

by the second largest eigenvalue in modulus or by the essential spectral radius, de-

termines the exponential mixing rate for typical observables from certain subspaces

V of L1(X,m). However, assuming there are further (isolated) eigenvalues, a faster

exponential rate of correlation decay determined by |λn(L)| can occur, if one chooses

(nontypical) observables in certain subspaces of finite codimension. These observables

do not ‘feel’ the rates corresponding to the first n− 1 eigenvalues, that is, they are in

a subspace with vanishing spectral projections corresponding to the eigendirections of

{λ1(L), . . . ,λn−1(L)}. In case the transfer operator L : V → V is compact, the essen-

tial spectrum reduces to the origin, and the spectrum consists solely of eigenvalues,

together with zero. The following lemma, valid for any compact operator L, and its

corollary for transfer operators allow to make the above statement on faster decay

rates precise.

Lemma 1.3.7. Let L : V → V be a compact operator on a Banach space V , with

eigenvalue sequence (λn(L))n∈N, ordered by decreasing modulus, with repetitions ac-

cording to algebraic multiplicity. Let V ∗ be the topological dual of V . Then, for n ∈ N,

|λn(L)| = inf
Wn⊆V

codimWn<n

sup

{

lim sup
k→∞

|g(Lkf)|1/k : f ∈ Wn, g ∈ V ∗

}

. (1.12)

Simply put, for a fixed n the supremum on the right-hand side of (1.12) yields

the slowest contraction rate, that is, largest eigenvalue, on a subspace Wn, and the

infimum maximises this rate by selecting the Wn with the n− 1 eigendirections corre-

sponding to the largest eigenvalues removed.

Now, under some conditions, this lemma allows to relate all exponential decay

rates of the correlation functions Cf,g(n) for observables in V × V to the (nonzero)

eigenvalues of a compact transfer operator L : V → V .

Corollary 1.3.8. Let T : X → X and V be as in Proposition 1.3.6. Further, as-

sume that Mϱ(V ) = V and L : V → V is compact with eigenvalue sequence (λn(L))n∈N.
Then, for n > 1,

|λn(L)| = inf
Wn⊆V

codimWn<n−1

sup

{

lim sup
k→∞

|Cf,g(k)|1/k : f ∈ Wn, g ∈ V

}

. (1.13)

Thus, the mixing rate on V is

αV = − ln |λ2(L)|. (1.14)
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Remark 1.3.9. The condition Mϱ(V ) = V will be true for all subspaces under

consideration in this work. In fact, this is implied by the assumption (AS1), as

the unique invariant density ϱ is bounded away from zero and infinity. In the next

chapters, we will mainly focus on spaces of holomorphic functions V = H∞(U) or

H2(U) (considered in Chapters 3 and 4) on a neighbourhood U ⊂ C containing X,

which can be chosen such that the extension of ϱ to U is still bounded away from zero

and infinity, implying Mϱ(V ) = V .

As an aside, while the assumption (AS1) is generally satisfied for (topologically

mixing) uniformly expanding systems, it excludes several well-studied non-uniformly

expanding systems, such as smooth interval or circle maps having a neutral fixed

point or critical points, see [53] and the references therein for an overview. Such

maps can possess a unique acip measure, albeit with density not bounded away from

∞. These maps, however, do not fall into the scope of this work, in which we are

mainly concerned with uniformly expanding maps, giving rise to compact transfer

operators on holomorphic function spaces and exponential decay of correlations.

In view of Corollary 1.3.8, knowledge of the spectrum of L : V → V , also known as

the correlation spectrum (see [20]), is useful, as it determines all possible exponential

correlation decay rates.

Moreover, it is well known (see, for example, [73, 74]) that the correlation spec-

trum is directly connected to the physically relevant power spectrum Ĉf,g, that is the

Fourier transform of the correlation function,

Ĉf,g(ω) =
∞
∑

n=0

e−inωCf,g(n) (ω ∈ C).

The analytic structure of Ĉf,g is related to the analytic structure of the resolvent of

the transfer operator as, with z = eiω, we have

Ĉf,g(ω) =
∞
∑

n=0

z−nCf,g(n)

=

∫

X
g ·

∞
∑

n=0

z−n(Ln − P )(Mϱf) dm

=

∫

X
g · z (zI − (L− P ))−1 (Mϱf) dm

for |z|−1 ∥L− P∥V→V < 1, where we have used Ln − P = (L − P )n for n > 0

(as P satisfies LP = PL = P ) and the Neumann series expansion of the resolvent

(zI − (L− P ))−1 =
∑∞

n=0 z
−n−1(L− P )n, see, for example, [87, Thm. 3.1, Ch. V]. If

L : V → V is compact, then by [87, Cor. 10.3, Ch. V] the resolvent has a meromorphic

extension to C\{0}, and hence the power spectrum Ĉf,g has a meromorphic extension

to C. The poles of Ĉf,g are called resonances and are given by i times the logarithm

of the nonzero eigenvalues of L − P . To summarise, the eigenvalues determine the
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resonances, and hence provide insights into the short-term behaviour of the system

via the Fourier modes of the correlation function.

1.4. Transfer operators on analytic function spaces

Since in subsequent chapters T : X → X will be an analytic (or piecewise ana-

lytic) expanding map on an interval or circle, it will be advantageous to consider the

associated transfer operator L on suitable spaces of analytic (holomorphic) functions

on a neighbourhood U of X with some prescribed boundary behaviour. Historically,

Ruelle [72] was the first to show, among other things, that for certain analytic expand-

ing maps on compact X ⊂ Cd, the associated transfer operator preserves and acts

compactly on Banach spaces consisting of functions holomorphic on a certain neigh-

bourhood U of X, which extend continuously to the boundary of U . Other authors

have considered transfer operators on different spaces of holomorphic functions, ex-

amples of which are Hardy spaces, see, for example, [58], or Bergman spaces [11, 37].

Under mild assumptions it is possible to show that the spectrum of L does not depend

on the particular choice of holomorphic function space [12].

For all our purposes we will consider Hardy spaces, and for simplicity of the next

argument we will restrict ourselves in this section to the following one.

Definition 1.4.1. For U an open subset of C, we write

H∞(U) =

{

f : U → C : f holomorphic and sup
z∈U

|f(z)| < ∞
}

for the Banach space of bounded holomorphic functions on U equipped with the norm

∥f∥H∞(U) = supz∈U |f(z)|.

For an analytic expanding full branch interval map T : I → I, we will show that

the associated transfer operator is well defined and compact on certain spaces H∞(U).

The key ingredient of the proof of this statement is a factorisation argument. In the

following chapters this argument will be adapted to the settings of expanding Markov

maps (Chapter 2) and analytic expanding circle maps (Chapters 3 and 4).

We first define a partition of a closed interval I to be a finite collection of closed

intervals {I1, . . . , IK} with disjoint interiors, that is, int(Ik) ∩ int(Il) = ∅ for k ̸= l,

such that
⋃K

k=1 Ik = I.

Definition 1.4.2. Let {I1, . . . , IK} be a partition of I. A transformation T : I →
I is called an analytic full branch map if for all k

(i) Tk = T |int(Ik) is a (real) analytic diffeomorphism,

(ii) cl(T (Ik)) = I, and

(iii) the inverse Φk of Tk can be analytically extended to Φk : I → Ik.

Each Tk is called a branch of T , and the corresponding inverse Φk is referred to as an

inverse branch. The map T is called expanding if |T ′(x)| > 1 for all x ∈
⋃K

k=1 int(Ik).
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It is not difficult to see from (1.6) using a change of variables, that for any analytic

full branch map T : I → I the transfer operator L : L1(I,m) → L1(I,m) can be

written as

Lf =
K
∑

k=1

Wk · (f ◦ Φk), (1.15)

with Wk = Φ′
k if Φ′

k > 0 and Wk = −Φ′
k otherwise. More general transfer operators

are given by (1.15) with other suitable weight functions Wk, see Chapter 2.

With slight abuse of notation we keep writing T and Φk for the respective analytic

extensions to some bounded domain9 U ⊂ C containing I.

Notation 1.4.3. As usual, we write cl(U) to denote the closure of U in C. Given

two open subsets U and V of C we write

U ⊂⊂ V

if cl(U) is a compact subset of V .

Assuming that T is expanding, all inverse branches Φk are contractions on I. We

can thus choose domains U and U ′ containing I such that

Φk(U) ⊂ U ′ ⊂⊂ U for all inverse branches Φk, (1.16)

see, for example, [12, Lem. 2.4]. For suitable domains U containing I and Wk ∈
H∞(U), we will show that the operator L in (1.15) leaves the subspace H∞(U) of

L1(I,m) invariant. Moreover, L acts compactly on these spaces. Both facts can be

seen from the following factorisation of the operator.

1.4.1. Factorisation argument. Observe that in (1.15) the argument of f ∈
H∞(U), that is Φ(z), is contained in the smaller domain U ′ because of (1.16). We

can thus use (1.15) to view L as an operator from the larger function space H∞(U ′)

to H∞(U). Note that the space is ‘larger’ as analyticity is only required on a domain

U ′ ⊂ U . We shall write L̃ in order to distinguish this lifted operator from L on

H∞(U). The boundedness of L̃ is the content of the next lemma.

Lemma 1.4.4. Let Wk ∈ H∞(U) for k = 1, . . . ,K. Suppose that U and U ′ are

domains in C such that Φk(U) ⊂ U ′ ⊂ U for all inverse branches Φk. Then L̃ given

by (1.15) maps H∞(U ′) continuously to H∞(U).

Proof. Set W = supz∈U
∑K

k=1 |Wk(z)| < ∞ and note that

|(L̃f)(z)| ≤
K
∑

k=1

|Wk(z)||f(Φk(z))| ≤ W ∥f∥H∞(U ′) (z ∈ U).

Hence, ∥L̃f∥H∞(U) ≤ W ∥f∥H∞(U ′), so L̃ is continuous. !

Choosing U ′ = U in the previous lemma shows that L : H∞(U) → H∞(U) is a

well-defined continuous operator.

9By a domain we mean a nonempty connected open subset of C.
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We next assume that U ′ ⊂⊂ U as in (1.16) and introduce the bounded embedding

operator J which maps the smaller space H∞(U) injectively into the larger space

H∞(U ′). To be precise, J : H∞(U) → H∞(U ′) is given by

(Jf)(z) = f(z) for z ∈ U ′. (1.17)

The two operators L and L̃ are related by restriction, that is,

L = L̃J . (1.18)

This relation is represented by the following diagram:

H∞(U ′)

L̃

!!❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

H∞(U)
!
"

J

""

L
## H∞(U)

(1.19)

Note that the factorisation above disentangles the intricacies of the map contained

in L̃ from its general expansiveness contained in J . Moreover, the embedding J is

compact by an application of Montel’s theorem (see, for example, [23, Thm. 2.9,

Ch. 7]). Hence, as L̃ is continuous, the factorisation (1.18) yields the following result.

Proposition 1.4.5. The operator L : H∞(U) → H∞(U) from (1.15) is compact.

1.4.2. Approximation argument. In some cases (for example, piecewise linear

Markov maps discussed in Chapter 2 or the family of expanding analytic circle maps

considered in Chapter 3), one can show that the associated transfer operator L leaves

certain finite-dimensional spaces invariant, and restricted to these spaces possesses

a triangular matrix representation. More formally, L can be approximated by finite

rank operators, whose matrix representations admit triangular form. The next lemma

connects the spectrum of L with that of its finite rank approximations. As this lemma

will be used several times, we shall state it for general Banach spaces.

Lemma 1.4.6. For Banach spaces V and V ′, let L : V → V be a bounded linear

operator which admits a factorisation of the form (1.18) with L̃ : V ′ → V and J : V →
V ′ bounded. Let PN : V → V denote a continuous projection onto an N -dimensional

subspace HN = PN (V ). If

(a) L(HN ) ⊆ HN for all N ∈ N0, and

(b) limN→∞ ∥J − JPN∥V→V ′ = 0,

then L is compact and its spectrum is given by

σ(L) = cl(
⋃

N∈N0

σ(L|HN
)).
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Proof. Clearly σ(L|HN
) ⊆ σ(L). Since L(HN ) ⊆ HN we have LPN = PNLPN

for every N ∈ N0. Using the factorisation (1.18) we see that

∥L− PNLPN∥V→V = ∥L− LPN∥V→V = ∥L̃J − L̃JPN∥V→V

= ∥L̃(J − JPN )∥V→V

≤ ∥L̃∥V ′→V ∥J − JPN∥V→V ′ ,

which, using boundedness of L̃ and (b), implies

lim
N→∞

∥L− PNLPN∥V→V = 0 . (1.20)

Since PNLPN is a finite rank operator for every N , the limit above implies that L
is compact. Clearly, the nonzero eigenvalues of each PNLPN are exactly the nonzero

eigenvalues of L|HN
. By (1.20) and an abstract spectral approximation result (see

[27, XI.9.5]), every nonzero eigenvalue λ ∈ σ(L) is a limit of some sequence (λN ) with

λN ∈ σ(L|HN
), which proves the remaining equality. !

For later use, we shall verify the approximation assumption (b) of the previous

lemma for the domains U = DR and U ′ = Dr satisfying (1.16) for L : H∞(U) →
H∞(U) given in (1.15), where Dr and DR denote two concentric open disks in C

centred at a point z0 with respective radii 0 < r < R. We introduce a projection

operator defined as follows: given an analytic function f in H∞(DR) and an integer

N , we define PNf to be the function given by the truncated Taylor series expansion

(PNf)(z) =
N
∑

n=0

f (n)(z0)

n!
(z − z0)

n . (1.21)

Clearly, PN is a projection operator on H∞(DR). It turns out that the finite rank

operators JPN approximate the embedding J : H∞(DR) → H∞(Dr) in (1.17) for

large N in a strong sense, which is the statement of the following lemma.

Lemma 1.4.7. For the setting above, the assumption (b) from Lemma 1.4.6 holds:

lim
N→∞

∥J − JPN∥H∞(DR)→H∞(Dr) = 0 .

Proof. By Cauchy’s integral theorem, we have for any f ∈ H∞(DR) and z ∈ Dr

f(z)− (PNf)(z) =
1

2πi

∫

γ

∞
∑

n=N+1

f(ζ)(z − z0)n

(ζ − z0)n+1
dζ

=
1

2πi

∫

γ

f(ζ)

ζ − z

(z − z0)N+1

(ζ − z0)N+1
dζ ,

where the contour γ is the positively oriented boundary of a disk centred at z0 with

radius R′ lying strictly between r and R. It follows that the norm of J − JPN viewed

as an operator from H∞(DR) to H∞(Dr) satisfies

∥J − JPN∥H∞(DR)→H∞(Dr) ≤
R′

R′ − r

( r

R′

)N+1
,
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from which the statement follows. !

Remark 1.4.8. The above lemma implies that J is compact, and hence using the

factorisation (1.16) shows that L in (1.15) is compact, which is an alternative way of

proving compactness of L without invoking Montel’s theorem.

By establishing compactness of the transfer operator in an analytic setup we have

set the stage for the investigations in the next chapters. There, the different settings

will require modified proofs of compactness, but all these modifications will follow

the structure presented above and build on these results. The presented link between

the spectrum of the transfer operator and the mixing rates will enable us to prove

certain bounds on these rates in terms of other dynamical quantities such as Lyapunov

exponents. Further, for a particular class of dynamical systems we will be able to

determine the entire spectrum and hence obtain all possible exponential mixing rates.



CHAPTER 2

Relation between mixing rates and Lyapunov exponents

Following the discussion in the introduction and in Chapter 1, the purpose of this

chapter is to approach the problem of obtaining a quantitative version of Lemma 1.1.3,

or more specifically, to relate the exponential mixing rate and the Lyapunov exponent

of simple expanding Markov maps.

It is a common perception in the physics literature that in chaotic low-dimensional

systems enjoying exponential decay of correlations there should be an intuitive rela-

tionship between Lyapunov exponents and correlation decay rates. In [5] an exact

relation between correlation decay and (generalised) Lyapunov exponents was conjec-

tured, and in [86] it was even suggested to take correlation decay rates as a meaningful

approximation for Lyapunov exponents.

On the other hand, one may argue that both quantities probe entirely different

and independent aspects of a dynamical system. The mixing rate is determined by

the size of the spectral gap of the associated transfer operator (given by the sublead-

ing eigenvalue or the essential spectral radius). In contrast, considering a certain

one-parameter family of operators containing the transfer operator, the Lyapunov ex-

ponent is governed by the sensitivity of the leading eigenvalue of these operators with

respect to the parameter (see Lemma 2.2.8 for precise statements).

In this chapter, we shall explore a possible relation in the simple setup of piecewise

linear expanding Markov maps. After motivating this relation in Section 2.1, we will

show in Section 2.2 that for these maps observed via piecewise analytic functions, the

decay rate is bounded above by twice the Lyapunov exponent; that is, we establish

lower bounds for the subleading eigenvalue of the corresponding transfer operator. In

Section 2.3 we shall provide numerical evidence that such bounds break down once

we consider general nonlinear expanding Markov maps, but certain relations still hold

if the transfer operator is considered on the space of bounded variation.

The results of this chapter are contained in the publication [85].

2.1. A pedestrian approach

The problem we want to address can be illustrated by a basic textbook example,

considered, for instance, in [5]. Take a linear full branch map (see Figure 2.1) on the

unit interval I = [0, 1], that is, a map T : I → I with constant slope γk on each Ik,

where {I1, . . . , IK} is a finite partition of I into K ≥ 2 closed intervals. This is a

simple instance of Definition 1.4.2.

23
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Figure 2.1. Diagrammatic view of a linear full branch map.

The unique acip measure is given by the Lebesgue measure and the Lyapunov

exponent (1.2) with respect to this measure can be expressed in terms of the slopes

as

Λ =
K
∑

k=1

|Ik| ln |γk|, (2.1)

with |Ik| = 1/|γk| denoting the size of the interval Ik.

The exponential mixing rate is determined by the second largest eigenvalue in

modulus of the associated transfer operator restricted to a space of sufficiently smooth

functions, see Corollary 1.3.8. In this setting it is well known (see, for example, [61])

that eigenfunctions of the transfer operator are given by polynomials and that the

corresponding eigenvalues νm can be expressed as

νm =
K
∑

k=1

1

|γk|
1

γmk
=

K
∑

k=1

|Ik|
1

γmk
(m ≥ 0), (2.2)

with largest eigenvalue λ1 = ν0 = 1. If all slopes γk have the same sign then (2.2)

defines a monotonic sequence (|νm|)m≥0 and the subleading eigenvalue λ2, being the

second largest in modulus, is equal to ν1. If the slopes have different sign then the

subleading eigenvalue is given either by ν1 or by ν2, depending on which of |ν1| or
ν2 is larger, that is, |λ2| = max{|ν1|, ν2}. Correlation functions of sufficiently smooth

observables decay typically at an exponential rate α = − ln |λ2|. Since |λ2| ≥ ν2 > 0

we obtain an upper bound α ≤ − ln ν2 for the decay rate, which can now be related to

the Lyapunov exponent (2.1). If we apply Jensen’s inequality1 to the convex function

ϕ(x) = − ln(x) we end up with

α ≤ − ln

(

K
∑

k=1

|Ik|
1

γ2k

)

≤
K
∑

k=1

|Ik|
(

− ln
1

γ2k

)

= 2Λ . (2.3)

The estimate of the decay rate in (2.3) is based on ν2, which contains positive terms

only, even if the slopes have different signs. As a result the upper bound is given

by twice the Lyapunov exponent. If all slopes have the same sign, say γk > 1, then

1Jensen’s inequality can be stated as follows. Let ϕ : R → R be convex, x1, . . . , xn ∈ R, and a1, . . . , an

positive weights with
∑n

k=1 ak = 1, then φ(
∑n

k=1 akxk) ≤
∑n

k=1 akφ(xk).
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λ2 = ν1, and the Lyapunov exponent itself yields an upper bound for the decay rate,

that is, α ≤ Λ.

Next we will address the question to which extent this simple reasoning can be

generalised and made rigorous for a larger class of systems.

2.2. Piecewise linear Markov maps

Focussing on piecewise linear Markov maps considerably reduces the need to

worry about certain subtleties, as the transfer operator is compact and admits finite-

dimensional matrix representations when considered on a space of piecewise analytic

observables. Thus, at a computational level all technical details reduce to straightfor-

ward matrix manipulations.

The argument requires defining a suitable function space, on which the generalised

transfer operator (see below) is compact. Results of this type for general analytic

Markov maps are well known (see, for example, [72] or [56]). The special case of

piecewise linear Markov maps, where a complete determination of the spectrum is

possible, is folklore. We provide the details for the sake of completeness.

Definition 2.2.1. An interval map T : I → I is said to be a Markov map if

there exists a finite partition {I1, . . . , IK} of I such that for any pair (k, l) either

T (int(Ik)) ∩ int(Il) = ∅ or int(Il) ⊆ T (int(Ik)). If this is the case, the corresponding

partition will be referred to as a Markov partition and the K ×K matrix A given by

Akl =

{

1 if int(Il) ⊆ T (int(Ik)),

0 otherwise
(2.4)

will be called the topological transition matrix of the Markov map T .

A Markov map T with Markov partition {I1, . . . , IK} is said to be expanding if

|T ′(x)| > 1 for all x ∈ int(Ik). It is said to be piecewise linear if T ′ is constant on

each element of the Markov partition, that is, T ′(x) = γk for all x ∈ int(Ik).

Finally, we call an expanding Markov map with topological transition matrix A

topologically mixing2 if there is a positive integer p such that each entry of the matrix

Ap is strictly positive.

The main tool to establish the desired inequality (2.3) consists in studying the

spectral properties of the generalised transfer operator (also referred to as Ruelle-

Perron-Frobenius operator).

Definition 2.2.2. To any piecewise linear Markov map T and β ∈ R, one can

associate the generalised transfer operator

(Lβf)(x) =
∑

y∈T−1(x)

f(y)

|T ′(y)|β , (2.5)

2This is a slight abuse of terminology, since its use is usually restricted to continuous maps. However,
it serves the same purpose as in the continuous setup as it guarantees the existence of a spectral gap
for the corresponding transfer operator (see Corollary 2.2.7).
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which is a bounded operator on L1(X,m).

For β = 1 this expression reduces to the (usual) transfer operator defined in (1.6).

As we shall see next, the operator Lβ in (2.5) leaves invariant certain subspaces of

L1(X,m), namely spaces of functions analytic on each of int(Ik). Any such function f

can be identified with the K-tuple of analytic functions, each of which is the analytic

extension of f |int(Ik) for some k. In order to make this more precise, we require some

more notation.

Definition 2.2.3. Let D denote an open disk in the complex plane. We use

H(D) =
K
⊕

k=1

H∞(D)

to denote the space of K-tuples h = (h1, . . . , hK) of bounded holomorphic functions

on D (see Definition 1.4.1). This is a Banach space when equipped with the norm

∥h∥H(D) = max{∥hk∥H∞(D) : k = 1, . . . ,K}.

Let T be a piecewise linear expanding Markov map with the Markov partition

{I1, . . . , IK} and topological transition matrix A. For each (k, l) with Alk ̸= 0 we

denote by ϕkl : Ik → Il the inverse branch of the Markov map from partition element

Ik into the partition element Il, as well as its analytic continuation to the complex

plane. Observe that, since the map is expanding, all inverse branches are contractions.

We can thus choose two concentric open disks Dr and DR in C with radii 0 < r < R

such that

ϕkl(DR) ⊂ Dr ⊂⊂ DR for all inverse branches ϕkl . (2.6)

It turns out that H(DR) is a suitable space of observables for the transfer operator

Lβ associated to T in the sense of the following proposition.

Proposition 2.2.4. Let T , A, ϕkl and DR be given as above. Then, for any real

β, the transfer operator Lβ viewed as an operator from H(DR) to itself is well defined

and bounded, and can be written as

(Lβh)k (z) =
∑

l

Alk|ϕ′
kl(z)|βhl(ϕkl(z)) . (2.7)

Proof. The representation (2.7) follows from a short calculation using the def-

inition of Lβ in (2.5). The K-tuple h = (h1, . . . , hK) corresponds to the piecewise

analytic function f on I, meaning that hl is an analytic extension of f |int(Il). If

x ∈ Ik, then (2.5) can be written as

(Lβf)(x) =
K
∑

l=1

Alk
f(ϕkl(x))

|T ′(ϕkl(x))|β
.

As ϕkl is the analytic extension of the inverse branch which maps Ik to Il, and

f |int(Il) = hl|int(Il), we get the desired expression for (Lβh)k, which is the analytic

extension of (Lβf)|int(Ik).
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Since |ϕ′
kl(z)|β = |γl|−β is constant and the disk DR satisfies (2.6), the operator

maps H(DR) to H(DR). In order to see that Lβ : H(DR) → H(DR) is bounded

observe that if h ∈ H(DR) with ∥h∥H(DR) ≤ 1, then

∥Lβh∥H(DR) = max
k

∥(Lβh)k∥H∞(DR) ≤ max
k

∑

l

Alk|γl|−β < ∞ . !

Remark 2.2.5. The space H(DR) is not the only suitable space of observables.

Restricting to the same disk of analyticity for each branch, however, simplifies notation.

More general spaces are discussed in [11] and [12].

Next we will show that Lβ viewed as an operator on H(DR) is compact. The

proof relies on the factorisation argument explained in Section 1.4.1. We shall write

L̃β : H(Dr) → H(DR) for the lifted operator also given by the functional expres-

sion (2.7), which is bounded by the same argument as for Lβ. Further, J is the

bounded embedding operator which maps H(DR) injectively to H(Dr). To be precise,

J : H(DR) → H(Dr) is given by (J h)k = Jhk, where J : H∞(DR) → H∞(Dr) in

turn is given by (Jh)(z) = h(z) for z ∈ Dr. As J is compact by Montel’s theorem

(see [23, Thm. 2.9, Ch. 7]) it follows that J is compact, and since L̃β is bounded, the

factorisation Lβ = L̃βJ as in (1.18) implies that Lβ is compact.

We now turn to the approximation argument in order to show that the spectrum of

Lβ is given by the eigenvalues of certain block matrices. For piecewise linear Markov

maps the transfer operator is easily seen to map piecewise polynomial functions of

degree at most N to piecewise polynomial functions of degree at most N . This follows

from a straightforward calculation using the fact that the inverse branches are affine

functions. Hence, in the natural basis of piecewise monomials, the operator Lβ can

be represented by the (N + 1)K × (N + 1)K block upper triangular matrix. To be

precise, let PN : H∞(DR) → H∞(DR) be the projection given in (1.21), and choose

{en : n = 0, . . . , N} with en(z) = zn as a basis for

HN = PN (H∞(DR)).

For HN =
⊕K

k=1HN choose the basis

{E(1)
0 , . . . , E(K)

0 , E(1)
1 , . . . , E(K)

1 , . . . , E(1)
N , . . . , E(K)

N },

where E(k)
n = (0, . . . , 0, en, 0, . . . , 0) with en in the k-th position.

On H(DR) we introduce the projection operator PN : H(DR) → H(DR) by setting

PNh = (PNh1, . . . , PNhK); note that HN = PN (H(DR)). Then, the restriction of

PNLPN to HN is represented by the (N + 1)K × (N + 1)K block upper triangular

matrix
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

L(00)(β) L(01)(β) . . . L(0N)(β)

0 L(11)(β)
. . .

...

...
. . .

. . . L(N−1N)(β)

0 · · · 0 L(NN)(β)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.8)
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A simple calculation of the matrix representation L(00)(1) of L1 on the space of

piecewise constant functions can be found in, for example, [17, p. 176]. More generally,

it follows from (2.7) that the matrix elements of the block matrices L(mn)(β) are given

in terms of the slopes γk and intercepts dk of the branches of T , and the topological

transition matrix (Akl)1≤k,l≤K induced by T and {I1, . . . , IK} as follows3:

L(mn)
kl (β) =

Alk

|γl|βγnl
· (−dl)

n−m

(

n

m

)

. (2.9)

The eigenvalues are determined by the diagonal blocks L(mm)(β) with matrix elements

given by the first factor in (2.9).

We are now able to combine the factorisation with the approximation result above

to prove the following.

Proposition 2.2.6. Let T , A, ϕkl and DR be as above. Then, for any real β,

the transfer operator Lβ viewed as an operator on H(DR) is compact and its nonzero

eigenvalues are precisely the nonzero eigenvalues of the matrices L(mm)(β) given in

(2.9) with m ∈ N0, with the same multiplicities4.

Proof. By Lemma 1.4.7, we have limN→∞ ∥J − JPN∥H∞(DR)→H∞(Dr) = 0 , which

immediately leads to

lim
N→∞

∥J − JPN∥H(DR)→H(Dr) = 0 .

As Lβ(HN ) ⊆ HN , by Lemma 1.4.6 we have that the nonzero eigenvalues of Lβ are

precisely those of PNLβPN for N ∈ N0, which are exactly the nonzero eigenvalues of

the block matrices in (2.8). The assertion concerning multiplicities follows from [27,

XI.9.5]. !

Specialising to topologically mixing Markov maps, the Perron-Frobenius theorem

(see, for example, [32, p. 53] or [45, p. 536]) guarantees that for any even m, the

nonnegative5 matrix L(mm)(β) in (2.9) has a simple, positive eigenvalue νm(β), re-

ferred to as the Perron eigenvalue of L(mm)(β), which is larger (in modulus) than all

other eigenvalues. As a consequence, we obtain the following refinement of the above

proposition.

Corollary 2.2.7. Suppose that the hypotheses of the previous proposition hold.

If the Markov map T is also topologically mixing, then Lβ : H(DR) → H(DR) has

a simple positive leading eigenvalue ν0(β). Moreover, this eigenvalue is the Perron

eigenvalue of the matrix L(00)(β).

3Note that ϕkl(z) = (z − dl)/γl. Then h = E(l)
n in (2.7) yields

(LβE
(l)
n )k(z) = Alk|ϕ

′

kl(z)|
β(ϕkl(z))

n = Alk
1

|γl|β
1
γn
l

n
∑

i=0

(

n
i

)

zn(−dl)
n−i .

The coefficient of zm yields (2.9).
4This means, for any nonzero eigenvalue λ of Lβ , its multiplicity coincides with the sum of the
multiplicities of λ as an eigenvalue of L(11)(β), . . . , L(NN)(β) for large enough N .
5The matrix L(mm)(β) is not necessarily nonnegative for odd m.
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Proof. This follows from the previous proposition together with the observation

that for m ≥ 1 the spectral radius ρ(L(mm)(β)) of the matrix L(mm)(β) is strictly

smaller than the Perron eigenvalue of L(00)(β). In order to see this note that by (2.9)

for all m ≥ 1 we have

|L(mm)
kl (β)| ≤ CL(00)

kl (β) , (2.10)

where

C = max
l

1

|γl|
< 1 .

As (2.10) implies |(L(mm)(β))pkl| ≤ Cp(L(00)(β))pkl for each p ≥ 0 and m ≥ 1, we have
∥

∥

∥

(

L(mm)(β)
)p∥
∥

∥

F
≤ Cp

∥

∥

∥

(

L(00)(β)
)p∥
∥

∥

F
,

where ∥·∥F denotes the Frobenius norm. The spectral radius formula (A.1) now implies

that

ρ(L(mm)(β)) ≤ Cν0(β) . !

The leading (positive) eigenvalue ν0(β) of L(00)(β) determines the so-called topo-

logical pressure, given by P (β) = ln ν0(β) for topologically mixing T . The following

lemma summarises the well-known properties of the pressure (see Figure 2.2), which

have been established for a large class of dynamical systems (see, for example, [41,

Ch. 4]). In the context of piecewise linear Markov maps, these can be deduced from

the matrix representation using elementary methods.

Lemma 2.2.8. The topological pressure P (β) has the following properties:

(i) P (1) = 0;

(ii) P is convex in β;

(iii) P is analytic in β;

(iv) ∂P
∂β

∣

∣

β=1
= −Λ, where Λ is the Lyapunov exponent in (1.2) with respect to the

unique acip measure µ.

Proof. Statement (i) follows immediately. To simplify notation for the other

statements, we denote the first block matrix L(00)(β) in (2.8) by L(β) for the remainder

of the proof.

(ii) As ν0(β) is a simple leading eigenvalue of L(β), we have P (β) = ln ν0(β) =

limn→∞(1/n) lnTr ((L(β))n), where Tr denotes the trace of a matrix. Convexity of the

pressure will follow from the logarithmic convexity of the trace. A function f : R → R+

is called logarithmically convex if ln f is convex, or equivalently if f(tx + (1 − t)y) ≤
f(x)tf(y)1−t for all x, y ∈ R and t ∈ [0, 1]. Using Hölder’s inequality, it is easy to see

that the sum of two logarithmically convex functions is again logarithmically convex.

Clearly, the same holds for the product of logarithmically convex functions. Now,

since every matrix entry Lkl(β) in (2.9) is logarithmically convex, so is Tr ((L(β))n).

Thus the topological pressure P (β) is convex.

(iii) As the leading eigenvalue ν0(β) is simple for any β, and L is analytic in β, it

follows that ν0 and hence P are analytic in β, see [39, Thm. 1.8, Ch. II].
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(iv) By (i) we have ∂P
∂β

∣

∣

β=1
= ∂ν0

∂β

∣

∣

β=1
. For any β ∈ R, the matrix L(β) has right

and left eigenvectors ρ(β) and m(β) corresponding to the simple eigenvalue ν0(β)

satisfying m(β)Tρ(β) = 1. The eigenvalue ν0(β) and the eigenvectors ρ(β) and m(β)

are analytic, see [39, Thm. 1.8, Ch. II]. For brevity, we write ρ = ρ(1) and m = m(1),

and write ρk and mk for the k-th entries of ρ and m, respectively. Observing that

mk = |Ik| and |γl||Il| =
∑K

k=1Alk|Ik| and using
(

∂L
∂β

)

kl
= Alk

|γl|β
ln 1

|γl|
we have

∂ν0
∂β

∣

∣

∣

∣

β=1

= m

(

∂L

∂β

∣

∣

∣

∣

β=1

)

ρ =
K
∑

l=1

(

K
∑

k=1

Alk|Ik|
|γl|

)

ln
1

|γl|
ρl = −

K
∑

l=1

|Il| ln |γl|ρl ,

which finishes the proof as Λ =
∑K

l=1 |Il| ln |γl|ρl. !

Now, using this lemma we are able to establish a relation between the exponential

mixing rate (see (1.10) and (1.14)) determined by the eigenvalues of the operator Lβ
for β = 1 and the Lyapunov exponent Λ in (1.2) with respect to the unique acip

measure with corresponding piecewise constant density.

Proposition 2.2.9. Let T : I → I be a topologically mixing piecewise linear ex-

panding Markov map, and DR as above. For H = H(DR) as in Definition 2.2.3, the

corresponding mixing rate αH is bounded in terms of the Lyapunov exponent:

αH ≤ 2Λ . (2.11)

If all slopes γk have the same sign a sharper estimate holds:

αH ≤ Λ. (2.12)

Proof. Recall that νm(β) denotes the largest eigenvalue (in modulus) of L(mm)(β).

The largest eigenvalue of Lβ for β = 1 is given by ν0(1) = 1, while ν2(1) is a positive

eigenvalue which provides a lower bound for the subleading eigenvalue of Lβ . Thus

αH ≤ − ln ν2(1) . (2.13)

On the other hand, L(22)(β) = L(00)(β + 2) by (2.9), which implies

ν2(β) = ν0(β + 2) . (2.14)

Hence, using the properties of the topological pressure in Lemma 2.2.8, the relations

(2.13) and (2.14) yield

αH ≤ −P (3) ≤ (3− 1)Λ .

See Figure 2.2 for a graphical illustration of the second inequality.

Note that if all slopes γk of T have the same sign, then we have L(11)(β) =

sign(γk)L(00)(β + 1). Thus, we can apply the previous arguments to |ν1(1)| to obtain

the following improved estimate:

αH ≤ − ln |ν1(1)| = − ln ν0(2) = −P (2) ≤ (2− 1)Λ . !
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β

Figure 2.2. Schematic representation of the topological pressure P (β)
and its tangent at β = 1 with slope −Λ. The marked points are those
used in the proof of Proposition 2.2.9.

Remark 2.2.10. The assumption that T is topologically mixing is sufficient but

not necessary. Indeed, there exist piecewise linear expanding Markov maps T with the

following properties: the map T is not topologically mixing, yet exhibits exponential

decay of correlations, that is αH > 0, while the conclusions of Proposition 2.2.9

hold. One example is the piecewise linear Markov map on the interval [0, 1] with four

branches given by T (x) = 2x+ (1− n)/2 for x ∈ [n/4, (n+ 1)/4) and n = 0, . . . , 3.

Remark 2.2.11. The estimates (2.11) and (2.12) are sharp with simple examples

achieving these bounds: the tent map (αH = 2Λ) and the doubling map (αH = Λ).

2.3. Remarks on nonlinear expanding maps

The setup of piecewise linear Markov maps is rather special. One may thus be

tempted to ask whether a result like Proposition 2.2.9 extends, say, to Markov maps

with nonlinear branches. While the previous considerations are based on the finite-

matrix representation and on the eigenvalue relation (2.14), there is no obvious ap-

proach to the nonlinear case.

In order to get an idea how the nonlinearity affects relations (2.11) and (2.12), we

approximate the spectrum of the transfer operator numerically. For this, we consider

a simple example, a family of full branch piecewise Möbius maps Fc defined on [−1, 1],

Fc(x) =
1− 2(c+ 1)|x|

1 + 2c|x| . (2.15)

We restrict the parameter to c ∈ (−1/4, 1/2), in order to guarantee expansivity. Fig-

ure 2.3(a) depicts the map Fc for c = −0.22.

There is an extensive body of literature on numerical approximation schemes for

spectra of expanding systems, which broadly fall into two categories: those with a

dynamical flavour based on cycle expansions (see [4]) of the Fredholm determinant

(see [20, 37]), and those with a functional analytic flavour based on finite-rank ap-

proximations of transfer operators (see [8, 31, 52]).
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Figure 2.3. Left: (a) Diagrammatic view of the Möbius map (2.15)
for c < 0. Right: (b) The largest eigenvalues (in modulus) of Lβ for
β = 1 for the map Fc in dependence on c, obtained using the Lagrange-
Chebyshev method with truncation order n = 25. Positive/negative
eigenvalues are indicated by filled/open symbols.

Following the spirit of the latter approach, we will effectively approximate the

spectrum of Lβ associated to Fc, considered on H∞(U) for certain bounded domains

U ⊃ [−1, 1], using Lagrange-Chebyshev approximation. The basic idea of this method

is to approximate Lβ by an n×nmatrix PnLβPn, where Pn denotes the projection that

sends f ∈ H∞(U) to its Lagrange-Chebyshev interpolating polynomial of degree n−1.

This method is easily implemented and, moreover, it is possible to show (see [10]) that

the eigenvalues of PnLβPn converge exponentially fast to the eigenvalues of Lβ . This
way the largest eigenvalues of Lβ and their dependence on c are easily obtained (see

Figure 2.3(b)). A minimum for the subleading eigenvalue occurs at about c = −0.11.

The corresponding numerical eigenvalue reads λ2 ≈ 0.10415 resulting in a mixing rate

αH = − lnλ2 ≈ 2.2619. The corresponding Lyapunov exponent is computed using the

numerical approximation of the invariant density. The numerical value is Λ ≈ 0.685

suggesting that the inequality (2.11) is violated.

However, by considering the transfer operator of Fc (or more generally any ex-

panding piecewise smooth map T : I → I with, say, I = [−1, 1], mixing with respect

to its unique acip measure) on a larger function space (including discontinuous func-

tions), the presence of nontrivial essential spectrum allows to establish an estimate

like (2.12). For that purpose let us consider the transfer operator L on the space

of functions of bounded variation6 BV . In this setup, the spectrum of the transfer

operator associated with expanding maps has been studied extensively. In particular,

6Recall that the total variation of a function f : [−1, 1] → R is defined as var(f) = sup
{
∑p

i=1 |f(xi)−

f(xi−1)| : −1 ≤ x0 ≤ · · · ≤ xp ≤ 1
}

. Then f ∈ L1(I,m) is in the space BV if there exists f̃ with

f̃ = f a.e. such that var(f̃) < ∞. This space is a Banach space with the norm given by

∥f∥BV = ∥f∥1 + inf
f̃=f a.e.

var(f̃).
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there is an explicit formula for the essential spectral radius [40]:

ρess = lim
k→∞

(inf{|(T k)′(x)| : x ∈ I})−1/k .

Thus, we have an upper bound for the mixing rate (Section 1.3)

αBV ≤ − ln ρess = lim
k→∞

1

k
ln inf{|(T k)′(x)| : x ∈ I} ,

which yields the following estimate for the Lyapunov exponent

Λ =
1

k

∫

I
ln |(T k)′(x)| dµ

≥ 1

k
inf{ln |(T k)′(x)| : x ∈ I}

=
1

k
ln inf{|(T k)′(x)| : x ∈ I} ,

for any k ∈ N. For observables of bounded variation we get the following result.

Proposition 2.3.1. Let T : I → I be a piecewise smooth expanding interval map

which is mixing with respect to its unique acip measure. Then the mixing rate on

BV is bounded by the Lyapunov exponent,

αBV ≤ Λ .

In fact, almost identical statements can be found in [21], for example, Corol-

lary 9.2.

There seems to be no simple answer to the question about the relation between

Lyapunov exponents and mixing rates. Correlation decay depends crucially on prop-

erties of the observables, and it is a pivotal question which observables are physically

relevant. Even if a real world phenomenon is sufficiently well modelled by a smooth

dynamical system, one should keep in mind that modern digital data processing in-

evitably leads to discontinuous observations. Here, observables of bounded variation

could be the relevant class for applications and in these cases Proposition 2.3.1 applies.

If one restricts to piecewise linear expanding Markov maps on an interval observed

via piecewise analytic functions, then Proposition 2.2.9 establishes a relation between

mixing rates and Lyapunov exponent. However, the above numerical simulations

(see also [20]) suggest that the bound obtained in Propostion 2.2.9 cannot be simply

extended to nonlinear expanding maps. The question remains whether a more general

bound on the mixing rate α (that is, a lower bound on the subleading eigenvalue) in

terms of the Lyapunov exponent Λ can be established.

Of these two quantities, the invariant density, and hence the Lyapunov exponent,

seems to be generally more easily accessible. For some examples the invariant den-

sity is known, or alternatively a transformation with a given invariant density can

sometimes be reverse engineered. The latter problem is known as the inverse Perron-

Frobenius problem, and has been investigated in several one-dimensional settings, see

[26, 29, 34].
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In contrast to this, not a single nontrivial example is known for which the sublead-

ing eigenvalue and the corresponding eigenfunction of a (compact) transfer operator

are known explicitly. To the best of the author’s knowledge, the only one-dimensional

examples for which the complete spectrum is analytically accessible are piecewise lin-

ear full branch interval maps (see, for example, [33]), or more generally, piecewise

linear Markov interval maps (see Section 2.2 or [61]) and circle maps of the form

z #→ zn for n ∈ N.

In the next chapters we shall construct a class of (nonlinear) expanding interval

and circle maps, for which we explicitly determine the entire spectrum of the asso-

ciated transfer operator. This will ultimately allow us to show that a bound like in

Proposition 2.2.9 cannot be generalised to all nonlinear expanding maps, by providing

a family of interval maps for which Λ is bounded while α can be arbitrarily large.



CHAPTER 3

Explicit spectra for a family of analytic circle maps

Motivated by the questions in the previous section, in this chapter we shall con-

struct nontrivial examples of dynamical systems for which the spectrum of the asso-

ciated transfer operator can be determined explicitly.

In Section 3.1 we start by constructing a family of interval maps with given eigen-

function and eigenvalue for the associated transfer operator, and show that these give

rise to analytic circle maps. To create a suitable setting, we shall define in Section 3.2

Banach spaces of holomorphic functions on annuli, on which the associated transfer

operators for analytic expanding circle maps are compact, in analogy with Section 1.4.

Then, in Section 3.3 we explicitly determine the entire spectrum for the circle maps

constructed in Section 3.1. Interestingly, when considered on the interval, these maps

provide counterexamples to a variant of Mayer’s conjecture on the reality of spectra

for transfer operators (see Section 3.4).

The results of this chapter are published as [83].

3.1. A family of maps

In order to obtain explicit spectral information in the setting of nonlinear maps,

we will turn the classical question of finding eigenvalues of the transfer operator for a

given map on its head, and attempt to construct a map for which the transfer operator

has a given eigenvalue with a given eigenfunction. Considering an analytic expanding

full branch map on the interval I with two branches (Definition 1.4.2), the eigenvalue

problem of the transfer operator in (1.15) formally reads

µnun = Φ′
1 · (un ◦ Φ1) + Φ′

2 · (un ◦ Φ2), (3.1)

where µn and un for n ∈ N0 are eigenvalues and eigenfunctions of L, and Φ1,Φ2 the

two inverse branches with Φ′
k > 0.

Given an analytic invariant density ϱ one may consider (3.1) for n = 0 with µ0 = 1

and u0 = ϱ as an equation to compute suitable inverse branches Φ1 and Φ2 of the

map. This setup is a particularly simple case of the so-called inverse Perron-Frobenius

problem [29, 34], which has been applied in various guises to tailor-make chaotic maps

with given stationary properties (see, for example, [26]). As we are attempting to

construct a map with two branches we are at liberty to specify a nontrivial eigenvalue

and corresponding eigenfunction. Thus, given an invariant density ϱ, a real number

35
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λ with |λ| < 1, and a potential eigenfunction u, we seek to solve

P = P ◦ Φ1 + P ◦ Φ2,

λU = U ◦ Φ1 + U ◦ Φ2

(3.2)

for the inverse branches Φ1 and Φ2. Here P and U denote suitable antiderivatives of

ϱ and u, respectively. A priori, there is no guarantee that (3.2) admits a real solution

for Φ1 and Φ2 and that such a solution actually determines an analytic full branch

interval map. Developing general conditions under which this is the case seems to be

a challenging task. Nevertheless, if we fix the interval I = [−1, 1], take ϱ to be the

uniform density, and u(x) = cos(πx) the eigenfunction with eigenvalue λ ∈ (−1, 1),

then (3.2) leads to

x = Φ1(x) + Φ2(x),

λ sin(πx) = sin(πΦ1(x)) + sin(πΦ2(x)).
(3.3)

A short calculation1 yields explicit expressions for Φ1 and Φ2:

Φ1(x) =
x

2
− 1

π
arccos

(

λ cos
(πx

2

))

and

Φ2(x) =
x

2
+

1

π
arccos

(

λ cos
(πx

2

))

.

For any λ ∈ (−1, 1) these indeed determine an analytic full branch map (see Figure 3.1)

with its associated transfer operator having λ as an eigenvalue with eigenfunction

x #→ cos(πx) by construction.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

λ = −0.7
λ = 0.4
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1

 

 

λ = −0.7
λ = 0.4

Figure 3.1. Inverse branches Φ1 and Φ2 (left) and the corresponding
interval map (right) for λ = −0.7 and λ = 0.4.

It turns out that this particular example can be lifted to an analytic circle map,

as Φ1 and Φ2 are analytic on R and Φ2(x) = Φ1(x + 2), thus a solution to (3.3) lifts

to Φ : R → R, where

Φ(x) = Φ1(x).

1We use the identities sin(2α) = 2 sin(α) cos(α) and sin(α)+ sin(β) = 2 sin((α+β)/2) cos((α−β)/2).
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This is an increasing diffeomorphism with inverse F : R → R given by

F (x) = 2x+ 1 +
2

π
arctan

( λ sin(πx)

1− λ cos(πx)

)

. (3.4)

Note that F is a lift of a circle map τ : T → T, which satisfies F (x + 2) = F (x) + 4

and p ◦ F = τ ◦ p, where p : R → T is the projection defined by p(x) = eiπx. The map

τ is a twofold covering of T. Note that F ′ > 1 for λ ∈ (−1, 1). Thus τ is an analytic

expanding circle map (Definition 3.2.1). It turns out that τ can be written in closed

form as

τ(z) = z
λ− z

1− λz
for z ∈ T . (3.5)

This can be seen using the relation eiπF (x) = τ(eiπx), from which it follows that

πF (x) = arg(τ(eiπx)) = πx+ arg

(

λ− eiπx

1− λeiπx

)

= 2πx+ π + 2arg(1− λe−iπx) .

As we shall see in Section 3.3, for the above family of analytic circle maps λ is the

second largest eigenvalue (in modulus) of the associated transfer operator. Moreover,

we will obtain its entire spectrum (Theorem 3.3.1), which consists of infinitely many

distinct nontrivial eigenvalues. Before embarking on these results, we shall first discuss

properties of analytic expanding circle maps and define Banach spaces of holomorphic

functions on which the corresponding transfer operators are compact (similarly to the

interval setting in Section 1.4).

Remark 3.1.1. As we will discuss in Chapter 4, the expanding circle map τ in

(3.5) belongs to the class of finite Blaschke products (see Defintion 4.3.1). It is well

known [81] that any two expanding circle maps of the same degree are topologically

conjugate. Moreover, if this conjugacy is absolutely continuous then the two maps

are smoothly conjugate [82]. However, while the map τ is topologically conjugate to

z #→ z2, this conjugacy is not smooth (except for λ = 0) as the multipliers of their

periodic points do not coincide.

3.2. Transfer operators for analytic circle maps

We start by defining the notion of analytic expanding circle map.

Definition 3.2.1. We say that τ : T → T is an analytic expanding circle map if

the following two conditions hold:

(i) τ is analytic on T;

(ii) infz∈T |τ ′(z)| > 1.

It is not difficult to see that τ is a K-fold covering of T for some integer K > 1.

Moreover, the map τ has analytic extensions to certain annuli containing T. With

slight abuse of notation we shall write τ for the various extensions as well. To be

precise, for r < 1 < R let Ar,R denote the open annulus Ar,R = { z ∈ C : r < |z| < R }
and write

A = {Ar,R : τ and 1/τ holomorphic on Ar,R} .
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Expansivity of τ yields the following result.

Lemma 3.2.2. For an analytic expanding circle map τ , there is A0 ∈ A such that

(a) both τ and 1/τ are analytic on the closure cl(A0) of A0;

(b) τ(∂A0) ∩ cl(A0) = ∅, where ∂A0 denotes the boundary of A0.

Proof. Since τ is an analytic expanding circle map it is possible to choose A1 ∈ A
such that both τ and 1/τ are analytic on cl(A1) with

α := inf
z∈A1

∣

∣τ ′(z)
∣

∣ > 1 .

It is not difficult to see that (ρ, θ) #→ log
∣

∣τ(ρeiθ)
∣

∣ is differentiable for all (ρ, θ) with

ρeiθ ∈ A1 and

∂

∂ρ
log
∣

∣

∣
τ(ρeiθ)

∣

∣

∣
= ℜ

(

eiθ
τ ′(ρeiθ)

τ(ρeiθ)

)

, (3.6)

∂

∂θ
log
∣

∣

∣
τ(ρeiθ)

∣

∣

∣
= −ℑ

(

ρeiθ
τ ′(ρeiθ)

τ(ρeiθ)

)

, (3.7)

where ℜ(z) and ℑ(z) denote the real and imaginary part of z ∈ C. Since τ leaves T

invariant, equation (3.7) implies either

eiθ
τ ′(eiθ)

τ(eiθ)
≥ α for all θ ∈ R , (3.8)

or

eiθ
τ ′(eiθ)

τ(eiθ)
≤ −α for all θ ∈ R . (3.9)

Suppose now that (3.8) holds (the other case can be dealt with similarly). Fixing β

with 1 < β < α we can choose Ar,R ∈ A with Ar,R ⊂ A1 and eβ(r−1) < r, eβ(R−1) > R

such that

ℜ
(

eiθ
τ ′(ρeiθ)

τ(ρeiθ)

)

≥ β for all ρ ∈ [r,R] and θ ∈ R .

Equation (3.6) now implies

log
∣

∣

∣
τ(eiθ)

∣

∣

∣
− log

∣

∣

∣
τ(reiθ)

∣

∣

∣
= ℜ

∫ 1

r
eiθ
τ ′(ρeiθ)

τ(ρeiθ)
dρ ≥ β(1− r)

and

log
∣

∣

∣
τ(Reiθ)

∣

∣

∣
− log

∣

∣

∣
τ(eiθ)

∣

∣

∣
= ℜ

∫ R

1
eiθ
τ ′(ρeiθ)

τ(ρeiθ)
dρ ≥ β(R− 1) .

Thus
∣

∣

∣
τ(reiθ)

∣

∣

∣
≤ eβ(r−1) < r and

∣

∣

∣
τ(Reiθ)

∣

∣

∣
≥ eβ(R−1) > R ,

so A0 := Ar,R has all the desired properties. !

Given an expanding circle map τ , we associate with it (using Definition 1.3.1) a

transfer operator L which is well-defined and bounded as an operator on L1(T) =

L1(T,m), where m = dθ/2π is the normalised one-dimensional Lebesgue measure
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on T. Let φk denote the k-th local inverse branch2 of the K-fold covering τ , then

L : L1(T) → L1(T) for the circle map τ is given by

(Lf)(z) =
K
∑

k=1

φ′k(z)(f ◦ φk)(z) (a.e. z ∈ T) , (3.10)

as for any f ∈ L1(T) and any g ∈ L∞(T) we have

1

2πi

∫

T

(Lf)(z) · g(z) dz =
1

2πi

∫

T

f(z) · (g ◦ τ)(z) dz

=
K
∑

k=1

1

2πi

∫

φk(T)
f(z) · (g ◦ τ)(z) dz (3.11)

=
1

2πi

∫

T

(

K
∑

k=1

φ′k(z) · (f ◦ φk)(z)
)

· g(z) dz,

where we used a change of variables and the fact that
⋃K

k=1 φk(T) = T up to a set of

measure zero.

It turns out that for suitable domains U containing T, the operator L leaves

H∞(U) invariant. The proof will rely on Fourier theory. Here and in the following,

we shall use

cn(f) =
1

2πi

∫

T

f(z)

zn+1
dz (n ∈ Z) (3.12)

to denote the n-th Fourier coefficient of f ∈ L1(T). Then, using the definition of L
(first equality in (3.11)) we can express the n-th Fourier coefficient of Lf as

cn(Lf) =
1

2πi

∫

T

f(z)

τ(z)n+1
dz (n ∈ Z) . (3.13)

A result3 analogous to Lemma 1.4.4 for the case of expanding circle maps now

reads as follows.

Lemma 3.2.3. Suppose that annuli A,A′ and A0 in A are chosen4 such that

A0 ⊂⊂ A′ ⊂ A and τ(∂A0) ∩ cl(A) = ∅ . (3.14)

Then the transfer operator L maps H∞(A′) continuously to H∞(A).

Proof. Given f ∈ H∞(A′), we shall show that Lf ∈ H∞(A) by estimating the

asymptotic behaviour of the Fourier coefficients of Lf . We denote by Tρ = {z ∈ C :

|z| = ρ} the circle of radius ρ centred at 0. Write R0 and R to denote the radii of

the circles TR0 and TR forming the ‘exterior’ boundary of A0 and A, respectively (see

2We use lower case Greek letters to denote inverse branches of circle maps and the corresponding
upper case letters to denote inverse branches of interval maps.
3Note, that we can not simply use Lemma 1.4.4 as φk is not analytic on T.
4This is always possible by Lemma 3.2.2.
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Figure 3.2. Proof of Lemma 3.2.3: choice of annuli A0, A′ and A.

Figure 3.2). Next choose5 R′′ with

inf
z∈TR0

|τ(z)| > R′′ > R .

Similarly, write r0 and r to denote the radii of the circles forming the ‘interior’ bound-

ary of A0 and A, respectively, and choose r′′ with

sup
z∈Tr0

|τ(z)| < r′′ < r .

Fix f ∈ H∞(A′) with ∥f∥H∞(A′) ≤ 1 and let n ≥ 0. Using (3.13) we see that

|cn(Lf)| =
∣

∣

∣

∣

1

2πi

∫

T

f(z)

τ(z)n+1
dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2πi

∫

TR0

f(z)

τ(z)n+1
dz

∣

∣

∣

∣

∣

≤ 1

2π

∫

TR0

1

|τ(z)|n+1
|dz| ≤ R0

(R′′)n+1
.

Similarly, for n ≥ 1 we have

|c−n(Lf)| =
∣

∣

∣

∣

1

2πi

∫

T

f(z)

τ(z)−n+1
dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2πi

∫

Tr0

f(z)τ(z)n−1 dz

∣

∣

∣

∣

∣

≤ 1

2π

∫

Tr0

|τ(z)|n−1 |dz| ≤ r0(r
′′)n−1 .

Hence,
∑∞

n=0 cn(Lf)zn converges absolutely for all |z| ≤ R and
∑∞

n=1 c−n(Lf)z−n

converges absolutely for all |z| ≥ r. Moreover, for z ∈ A we have
∣

∣

∣

∣

∣

∞
∑

n=−∞

cn(Lf)zn
∣

∣

∣

∣

∣

≤
∞
∑

n=0

|cn(Lf)|Rn +
∞
∑

n=1

|c−n(Lf)| r−n

≤
∞
∑

n=0

R0Rn

(R′′)n+1
+

∞
∑

n=1

r0(r′′)n−1

rn
=

R0

R′′ −R
+

r0
r − r′′

.

5Here, we assume that τ is orientation-preserving. The orientation-reversing case is similar.
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Thus, by the uniqueness of the Fourier transform on L1(T), we conclude that Lf ∈
H∞(A) and

∥Lf∥H∞(A) ≤
(

R0

R′′ −R
+

r0
r − r′′

)

∥f∥H∞(A′) for all f ∈ H∞(A′) . !

Choosing A = A′ in the previous lemma shows that L induces a well-defined

continuous operator from H∞(A) to itself.

Moreover, the operator L : H∞(A) → H∞(A) is compact, which follows from a

factorisation argument (see also Section 1.4.1). Given A,A′ ∈ A with A′ ⊂⊂ A define

the canonical embedding J : H∞(A) → H∞(A′) by

Jf = f |A′ . (3.15)

The embedding J is compact by Montel’s theorem [23, Thm. 2.9, Ch. 7].

Now, for the choice ofA′ ⊂⊂ A satisfying (3.14), the transfer operator L : H∞(A) →
H∞(A) factorises as

L = L̃J, (3.16)

where L̃ is the transfer operator viewed as an operator from H∞(A′) to H∞(A),

guaranteed to be continuous by Lemma 3.2.3. Thus, the factorisation (3.16) implies

the following result.

Proposition 3.2.4. Let A ∈ A with A0 ⊂⊂ A. Then L : H∞(A) → H∞(A) is

compact.

For future use we shall now show that J is well approximated by the following

operators: for N a positive integer, define the finite rank operator JN : H∞(A) →
H∞(A′) by

(JNf)(z) =
N−1
∑

n=−N−1

cn(f)z
n for z ∈ A′ . (3.17)

Lemma 3.2.5. Let J and JN be defined as above. Then

lim
N→∞

∥J − JN∥H∞(A)→H∞(A′) = 0 .

In particular, the embedding J is compact.

Proof. Choose A′′ ∈ A with

A′ ⊂⊂ A′′ ⊂⊂ A .

Let R′ and r′ denote the radii of the circles forming the ‘exterior’ and ‘interior’ bound-

ary of A′, and analogously for R′′ and r′′ so that

r′′ < r′ < R′ < R′′ .
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Fix f ∈ H∞(A) with ∥f∥H∞(A) ≤ 1. Then

∥Jf − JNf∥H∞(A′) = sup
z∈A′

∣

∣

∣

∣

∣

∣

∑

n≥N

zn

2πi

∫

T

f(ζ)

ζn+1
dζ +

∑

n≥N+2

z−n

2πi

∫

T

f(ζ)

ζ−n+1
dζ

∣

∣

∣

∣

∣

∣

≤
∑

n≥N

(R′)n

2π

∫

TR′′

|f(ζ)|
|ζ|n+1

|dζ|+
∑

n≥N+2

(r′)−n

2π

∫

Tr′′

|f(ζ)|
|ζ|−n+1

|dζ|

≤
(

R′

R′′

)N 1

1− R′

R′′

+

(

r′′

r′

)N+2 1

1− r′′
r′

,

from which the assertions follow. !

3.3. Spectrum for a family of circle maps

In this section we consider the family of analytic expanding circle maps constructed

in Section 3.1 and show that the spectrum of L can be determined explicitly, which

is the statement of Theorem 3.3.1.

Note first that the expression for τ in (3.5) yields an analytic circle map not just

for real λ, but for any λ ∈ C with |λ| < 1 (see Figure 3.3) if written as

τ(z) = z
λ− z

1− λz
for z ∈ T , (3.18)

which is expanding since for z ∈ T we have

|τ ′(z)| =
∣

∣

∣

∣

τ ′(z)
z

τ(z)

∣

∣

∣

∣

= 1 +
1− |λ|2

|λ− z|2
> 1.

It is possible to write down lifts of (3.18) for complex λ similar to (3.4). In fact, a

short calculation shows that if λ = |λ|eiα then the argument of arctan in (3.4) needs

to be replaced by |λ| sin(πx− α)/(1− |λ| cos(πx− α)).

Figure 3.3. τ projected on the interval [−1, 1] for (left) λ = −0.7 and
λ = 0.4 and (right) λ = −0.3− i

√
0.4 = 0.7eiα with α ≈ −2.0137 and

λ = 0.1 + i
√
0.15 = 0.4eiβ with β ≈ 1.318. Note that the projection is

chosen such that the interval endpoint −1 is fixed by τ .
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Given τ as in (3.18), we now choose an annulus A ∈ A with A0 ⊂⊂ A. By

Proposition 3.2.4 the associated transfer operator L : H∞(A) → H∞(A) is well defined

and compact. Moreover, all eigenvalues of L can be determined explicitly, which is

the essence of the following theorem.

Theorem 3.3.1. For any λ ∈ C with |λ| < 1 the eigenvalues of the transfer

operator L : H∞(A) → H∞(A) associated to τ in (3.18) are precisely all nonnegative

powers of λ and λ, that is, the spectrum of L is

σ(L) = {1} ∪ {λn : n ∈ N } ∪
{

λ
n
: n ∈ N

}

∪ {0} .

Moreover, the algebraic multiplicity of the leading eigenvalue is 1, while the algebraic

(and geometric) multiplicity of each λn is equal to its number of occurrences in the

above list, meaning it is 1 if λn ̸= λ
n
and 2 otherwise.

The proof of this theorem relies on the fact that the spectrum of L can be computed

by analysing the spectrum of a suitable matrix representation, which is obtained as

follows. ForN ∈ N consider the projection PN given by the same functional expression

as JN in (3.17), now viewed as an operator from H∞(A) to itself. Clearly, PNLPN is

an operator of rank 2N+1. Writing en(z) = zn, the set { en : −N − 1 ≤ n ≤ N − 1 }
is a basis for

HN = PN (H∞(A))

and the restriction of PNLPN to HN is represented by the (2N +1)× (2N +1) matrix

L(N) defined by

(L(N))n,l = cn−1(Lel−1) =
1

2πi

∫

T

zl

τ(z)n
dz

z
=

1

2πi

∫

T

zl−n
(1− λz

λ− z

)ndz

z
, (3.19)

where we used (3.13) for the second equality.

In particular, the nonzero spectrum of PNLPN is given by the nonzero spectrum

of L(N). Observe that (3.19) defines an infinite matrix L containing L(N) as a finite

submatrix. The following lemma summarises the properties of L.

Lemma 3.3.2. For l, n ∈ Z the following hold:

(a) L0,0 = 1;

(b) L0,l = 0 if l ̸= 0;

(c) L−n,−l = Ln,l;

(d) L−n,−n = λn for n ≥ 0;

(e) Ln,l = L−n,−l = 0 for n > l.

Proof. Assertions (a) and (b) immediately follow from (3.19),

while (c) is a consequence of

L−n,−l =
1

2πi

∫

T

zn−l
( λ− z

1− λz

)ndz

z
=

1

2π

∫ 2π

0
eiθ(n−l)

( λ− eiθ

1− λeiθ

)n
dθ

=
1

2π

∫ 2π

0
e−iθ(l−n)

(1− λe−iθ

λ− e−iθ

)n
dθ = Ln,l .
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For (d) and (e), observe that z #→ (λ − z)/(1 − λz) is holomorphic for all z in the

closed unit disk. Thus, by the Residue theorem,

L−n,−n =
1

2πi

∫

T

1

z

( λ− z

1− λz

)n
dz = λn.

Finally n > l implies L−n,−l = 0, as the integrand is a holomorphic function. !

Another view of the above is the following. For n, l > 0 the Cauchy formula

implies that l! · L−n,−l is the l-th derivative of τ(z)n = zn · h(z) at z = 0 with

h(z) = (λ−z)n/(1−λz)n a holomorphic function on D, and therefore L−n,−l vanishes

for 0 ≤ l < n. For l ≥ n ≥ 0 one obtains L−n,−l = h(l−n)(0)/(l − n)!, which can be

calculated explicitly6. In particular L−n,−n = h(0) = λn and we conclude that L(N)

has the following upper-lower triangular matrix structure

L(N) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λN 0 0 0 0 . . . 0

...
. . . 0 0

...
. . .

...

∗ ∗ λ 0 0 . . . 0

0 0 0 1 0 0 0

0 . . . 0 0 λ ∗ ∗
...

. . .
... 0 0

. . .
...

0 . . . 0 0 0 0 λ
N

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.20)

Clearly, the spectrum of L(N) is given by the diagonal elements (L(N))n,n, that is,

σ(L(N)) = {1} ∪ {λn : n = 1, . . . , N} ∪ {λn : n = 1, . . . , N}.

Moreover, the triangular structure of L(N) implies L(HN ) ⊆ HN .

We are now able to prove the main statement of this chapter.

Proof of Theorem 3.3.1. For every λ ∈ C with |λ| < 1, the map τ in (3.18) is

an analytic expanding circle map. We can choose A,A′ ∈ A satisfying (3.14) such that

the associated L : H∞(A) → H∞(A) admits the factorisation (3.16). As L(HN ) ⊆ HN

for every N ∈ N0 and by Lemma 3.2.5 limN→∞ ∥J − JN∥H∞(A)→H∞(A′) = 0 with

JN = JPN , Lemma 1.4.6 implies that the spectrum of L consists of eigenvalues,

together with zero, given by

σ(L) = cl(
⋃

σ(L|HN
)) = cl(

⋃

σ(L(N))) = {1} ∪ {λn : n ∈ N} ∪ {λn : n ∈ N} ∪ {0} .

The assertions concerning the multiplicities of the eigenvalues of L follow from the

corresponding properties of L(N) and [27, XI.9.5]. !

6For n > 0 and l ∈ Z we have

(L(N))n,l =

{

(−1)n−l(λ)2n−l∑l−n
m=0

(

l−m−1
n−1

)(

n
m

)

(−|λ|2)l−n−m if l ≤ 2n,

(−1)nλl−2n∑n
m=0

(

l−m−1
n−1

)(

n
m

)

(−|λ|2)n−m if l > 2n.
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Remark 3.3.3. To the best of the author’s knowledge, these are the first examples

of analytic circle maps for which the spectrum of the associated transfer operator

consists of infinitely many distinct nonzero eigenvalues (on the space of holomorphic

functions). Previously, the only examples of circle maps with known spectrum were

those of the form z #→ zn for n ≥ 2 (for n = 2 corresponding to λ = 0 in the above

theorem). The spectra of the corresponding transfer operators when acting on analytic

functions coincide with the two-point set {0, 1} for all n. See [7, Ex. 2.15] for a proof

when n = 2; the general case can be proved along the same lines. Alternatively, this

will follow from Theorem 4.3.4.

3.4. Circle maps considered on an interval

In the previous section we have considered the transfer operator LT : H∞(A) →
H∞(A) associated to an analytic expanding circle map τ : T → T, which maps the

space of bounded holomorphic functions on an appropriately chosen annulus A ∈ A
compactly to itself. The circle map τ gives rise to a map T on an interval I =

[x0, x1], chosen such that a fixed point z0 of τ corresponds to the interval endpoint x0.

Choosing a suitable complex neighbourhood D of I, we shall now study the spectral

properties of LI : H∞(D) → H∞(D), the transfer operator corresponding to T .

More precisely, let T : I → I denote the interval map arising from the circle map

τ : T → T via p ◦ T = τ ◦ p with a projection p : I → T satisfying7 p(x0) = z0.

Let {Φ1, . . . ,ΦK} be the set of inverse branches of T . With slight abuse of notation

we keep writing T and Φk for the respective analytic extensions to neighbourhoods

containing I. Since τ is an analytic K-covering, we have the matching conditions

(with suitable labelling of the inverse branches)

Φ1(x0) = x0 , ΦK(x1) = x1 , Φ(n)
1 (x0) = Φ(n)

K (x1) ,

Φk+1(x0) = Φk(x1) , Φ(n)
k+1(x0) = Φ(n)

k (x1) for k = 1, . . . ,K − 1 ,
(3.21)

where for each n ∈ N, we use Φ(n)
k to denote the n-th derivative of Φk.

Since T is expanding, all inverse branches Φk are contractions. We can thus choose

a topological disk D containing I such that p(D) = A and Φk(D) ⊂⊂ D for all k. Then

LI : H∞(D) → H∞(D), given by

LIf =
K
∑

k=1

Φ′
k · (f ◦ Φk) , (3.22)

yields a bounded operator. Moreover, LI is compact (see Proposition 1.4.5 or [11, 59]),

its spectrum consisting of countably many eigenvalues accumulating at zero only.

Remark 3.4.1. It is perhaps not surprising that the operators LT and LI are

closely related. In order to see this, we define the operator Qp : H∞(A) → H∞(D) by

(Qpf)(x) = p′(x)f(p(x)) .

7A suitable choice is p(x) = e
2πi

(x−x0)
(x1−x0)

+i arg z0 .
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Clearly p(D) = A implies that Qp is injective. However, the operator Qp is not

surjective, as the image im(Qp) = {f ∈ H∞(D) : f (n)(x0) = f (n)(x1) ∀n ∈ N0} is not

all of H∞(D). It is easy to verify that LI and LT are related by

LIQp = QpLT ,

and that σ(LT) ⊆ σ(LI), which follows from the injectivity of Qp. On the other hand,

an eigenvalue of LI with an eigenfunction f is also an eigenvalue of LT if f ∈ im(Qp).

The following lemma connects the spectrum of LI with the spectrum of LT. This

result is mentioned in the introduction of [43] together with a proof based on the

theory of Fredholm determinants.

Lemma 3.4.2. Suppose that τ is an analytic expanding circle map and T : I → I

the corresponding interval map fixing the interval endpoint x0. Let LT and LI be the

corresponding transfer operators as defined above. Then the spectrum of LI is given

by

σ(LI) = σ(LT) ∪
{

(T ′(x0))
−n : n ∈ N

}

.

Informally, the additional eigenvalues of LI can be explained by the observation

that the fixed point z0 of τ corresponds to the two fixed points of T at the interval

endpoints. The Fredholm determinants of LI and LT can be written in terms of

the traces of Ln
I and Ln

T
, which in turn can be expressed in terms of fixed point

multipliers of Tn and τn. The two determinants differ by a factor corresponding to

the additional fixed point of T . The zeros of this factor are the reciprocals of the

additional eigenvalues of LI . Here we shall give a short alternative proof.

Proof of Lemma 3.4.2. Let H∞(D)∗ denote the strong dual of H∞(D), that

is, the space of continuous linear functionals on H∞(D) equipped with the topology

of uniform convergence on the unit ball. Let L∗
I : H

∞(D)∗ → H∞(D)∗ denote the

adjoint operator of LI , that is,

(L∗
I l)(f) = l(LIf) for all l ∈ H∞(D)∗ and f ∈ H∞(D) .

For n ∈ N0, let ln ∈ H∞(D)∗ be defined by

ln(f) = f (n)(x1)− f (n)(x0) for f ∈ H∞(D) .

It is not difficult to see that l0 is an eigenvector of L∗ with eigenvalue Φ
′

1(x0) since

(L∗
I l0)(f) =(LIf)(x1)− (LIf)(x0)

=Φ′
K(x1)(f ◦ ΦK)(x1)− Φ′

1(x0)(f ◦ Φ1)(x0)

+
K−1
∑

k=1

(

Φ′
k(x1)(f ◦ Φk)(x1)− Φ′

k+1(x0)(f ◦ Φk+1)(x0)
)

=Φ′
1(x0)(f(x1)− f(x0))

=Φ′
1(x0)l0(f) ,
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where the penultimate equality follows from (3.21). We can proceed similarly for an

arbitrary n ∈ N. Observe that the n-th derivative of LIf is given by

(LIf)
(n) =

K
∑

k=1

n−1
∑

m=0

wk,m · (f (m) ◦ Φk) +
K
∑

k=1

(Φ′
k)

n+1 · (f (n) ◦ Φk),

where each wk,m is a weight function composed of derivatives of Φk of order up to

n − m + 1 satisfying wk,m(x1) = wk+1,m(x0) for k = 1, . . . ,K − 1 in analogy with

(3.21). A calculation similar to the above yields

(L∗
I ln)(f) =(LIf)

(n)(x1)− (LIf)
(n)(x0)

=
n−1
∑

m=0

w1,m(x0)lm(f) + (Φ′
1(x0))

n+1ln(f). (3.23)

It follows that L∗
IVn ⊆ Vn, where Vn = span{l0, . . . , ln} for each n. Thus (Φ′

1(x0))
n is

an eigenvalue of L∗
I , and hence of LI . As T ′(x0) = 1/Φ′

1(x0) and every eigenvalue of

LT is an eigenvalue of LI , we have shown

σ(LT) ∪ {T ′(x0)
−n : n ∈ N} ⊆ σ(LI).

For the converse inclusion recall Remark 3.4.1 and assume that f ∈ H∞(D) is an

eigenfunction of LI with eigenvalue µ and f /∈ im(Qp). It follows that there is N ∈ N0

such that f (N)(x0) ̸= f (N)(x1) and f (n)(x0) = f (n)(x1) for 0 ≤ n < N , from which

ln(f) = 0 for 0 ≤ n < N . Since LIf = µf , this implies

lN (µf) = lN (LIf) = (Φ′
1(x0))

N+1lN (f) .

As lN is linear and nonzero, it follows that µ = (Φ′
1(x0))

N+1 = (T ′(x0))−N−1. !

Remark 3.4.3. The eigenfunctions of L∗
I corresponding to the eigenvalues T

′(x0)−n

with n ∈ N can be deduced from the upper triangular matrix representation of

the restriction of L∗
I to the space Vn = span{l0, . . . , ln}. If T is the doubling map

T (x) = 2x mod 1 on I = [0, 1], then all higher derivatives of Φk vanish. Hence, the

respective eigenfunctions of L∗
I are precisely ln as w1,m = 0 for m = 0, . . . , n− 1, and

consequently (3.23) reduces to (L∗
I ln)(f) = (Φ′

1(x0))
n+1ln(f). Moreover, it is well

known (see, for example, [3]) that the corresponding eigenfunctions of LI are given

by Bernoulli polynomials.

We can now apply this result to the interval maps introduced in Section 3.1, which

we view as arising from analytic expanding circle maps. Let I = [−1, 1] and λ ∈ R

with |λ| < 1, then the interval map T arising from τ in (3.18) fixes the interval

endpoint x0 = −1 with 1/T ′(−1) = (λ + 1)/2. By Theorem 3.3.1 and Lemma 3.4.2,

the eigenvalues of LI can be divided into two classes, those given by the eigenvalues of

LT (each of multiplicity 2, except the eigenvalue 1 of multiplicity 1) and those given

by the powers of the inverse multiplier of the fixed point x0, that is,

σ(LI) =
(

{λn : n ∈ N0} ∪ {0}
)

∪ {
(λ+ 1

2

)n
: n ∈ N} , (3.24)
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see Figure 3.4.
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1/T’(−1)n+1

Figure 3.4. For each λ ∈ (−1, 1) and for n = 0, . . . , 4 the eigenvalues
in the spectrum (3.24) of LI are plotted (in modulus). These are
comprised of the eigenvalues λn of LT (solid line for λn > 0, and
dashed for λn < 0) and the eigenvalues 1/(T ′(−1))n+1 of LI . Note
that the case λ = 0 corresponds to the doubling map.

Considering λ ∈ C, say λ = |λ|eiα with |λ| < 1, the fixed point of τ is z0 =

(λ− 1)/(1− λ) ∈ T with

T ′(−1) = τ ′(z0) =
λ+ λ− 2

λλ− 1
=

2(|λ| cos(α)− 1)

|λ|2 − 1
.

As above, the spectrum of LI splits into two parts:

σ(LI) =
(

{1} ∪ {λn : n ∈ N} ∪ {λn : n ∈ N} ∪ {0}
)

∪
{

( |λ|2 − 1

2(|λ| cos(α)− 1)

)n
: n ∈ N

}

.

Note that for λ /∈ R the transfer operator LI associated to T has countably

infinitely many nonreal eigenvalues of arbitrarily small modulus. This provides coun-

terexamples to the following conjecture.

Conjecture 3.4.4 (Weak variant of Mayer’s conjecture in dimension one). Let

Ω ⊂ C be a bounded domain with ΩR = Ω ∩ R ̸= ∅ and Φk : Ω → Ω contracting

holomorphic mappings with their unique fixed points z∗k in ΩR. If the Φ′
k(z

∗
k) are real,

then all eigenvalues of the corresponding transfer operator LI in (3.22) with small

enough modulus are real.

Remark 3.4.5. Mayer [57] originally conjectured that transfer operators satisfy-

ing the hypotheses of the above conjecture have real spectra. Counterexamples to

Mayer’s conjecture were given by Levin in [48] which led to the above weakening of

the conjecture.

Reality of spectra has been studied in a few concrete examples. For the Gauss

map, Mayer showed that the eigenvalues of the transfer operator (on an appropriately

defined function space) are real and tend to zero exponentially fast, see [58] or the
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survey [59]. Another prominent example is the linearised Feigenbaum period doubling

operator, for which numerical observations [4, 20] suggest the spectrum to be real.

Furthermore, transfer operators of expanding interval maps with one ‘dominating’

branch have real spectra, as shown by Rugh [75] using a perturbative approach.

To the best of the author’s knowledge these are the first examples of nontrivial

circle and interval maps for which the entire spectrum of the associated transfer oper-

ator is known explicitly. Certain conjectures were previously hard to test, but might

now be more accessible.



CHAPTER 4

Spectral structure for finite Blaschke products

The family of analytic circle maps considered in the previous chapter belongs to

a special class of circle maps. These are finite Blaschke products, a class of rational

maps on the Riemann sphere Ĉ = C ∪ {∞} given by finite products of Möbius maps

preserving the unit circle and the unit disk (see Section 4.3 for definitions and proper-

ties). The beauty of Blaschke products is that they partition the Riemann sphere into

simple dynamically invariant regions: the unit circle, the unit disk and the exterior

disk in Ĉ. As it turns out, these properties guarantee the diagonal block structure

representation (3.20) of L, which was used to determine the spectrum of L in the

previous chapter.

The purpose of this chapter is to uncover the underlying structure of transfer

operators associated to analytic expanding circle maps, and to deduce the entire

spectrum for those circle maps which arise from finite Blaschke products. The strategy

relies on the fact that the spectrum of L can be understood by passing to its (Banach

space) adjoint L∗. This strategy has been explored in the context of Ruelle operators

acting on the space of functions locally analytic on the Julia set of a rational function,

see [9, 49, 50, 90]; in particular, explicit expressions for Fredholm determinants of

certain Ruelle operators have been derived. In our setting of analytic expanding circle

maps, we adopt a similar approach, that is, we analyse the spectrum of L by deriving

a natural explicit representation of L∗ (Proposition 4.2.5).

As mentioned in Remark 1.3.3, the (Banach space) adjoint of the transfer operator

defined in (1.6) is known as the Koopman operator, defined on L∞(X,m) and given

by composition with the map T . In the literature, the term ‘composition operator’

mostly refers to compositions with analytic functions mapping a disk into itself, a

setting in which operator-theoretic properties such as boundedness, compactness, and

most importantly explicit spectral information are well established (good references

are [80] or the encyclopedia on the subject [24]). We will demonstrate that in our

particular analytic setting of finite Blaschke products, the spectrum of the adjoint

operator L∗ can be deduced by studying the spectrum of composition operators on

spaces of holomorphic functions on the regions left invariant under Blaschke products.

The main result of this chapter (Theorem 4.3.4) can be summarised as follows.

Let B be a finite Blaschke product such that its restriction τ to the unit circle T is an

expanding circle map. Denote by H2(A) the Hardy-Hilbert space of functions which

are holomorphic on some suitable annulus A (containing T) and square integrable on

its boundary ∂A (see Definition 4.1.1). Then the transfer operator L associated to τ

50
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is compact on H2(A), with spectrum

σ(L) = {1} ∪ {λ(z0)n : n ∈ N} ∪ {λ(z0)
n
: n ∈ N} ∪ {0} ,

where λ(z0) is the multiplier of the unique attracting fixed point z0 of B in the

unit disk. This implies that for finite Blaschke products which give rise to analytic

expanding circle maps, the derivative of the fixed point in the unit disk completely

determines the spectrum of L.
This chapter is organised as follows. In Section 4.1.1, we review basic definitions

and facts about Hardy-Hilbert spaces on annuli. The following Section 4.1.2 is devoted

to analytic expanding circle maps and their transfer operators. In Section 4.2, we

explicitly derive the structure of the corresponding adjoint operators after having

established a suitable representation of the dual space. This structure is then used in

Section 4.3 in order to obtain the spectrum of transfer operators associated to analytic

expanding circle maps arising from finite Blaschke products, thus proving the main

theorem of this chapter. Section 4.4 presents applications of the main theorem to

expanding interval maps with arbitrarily small subleading eigenvalue, but bounded

Lyapunov exponent. In this way, we return to the question raised in Chapter 2 and

show that a relation between Lyapunov exponents and mixing rates of the type in

Proposition 2.2.9 cannot be generalised to all nonlinear expanding maps.

The results of this chapter are contained in [13] and [84].

4.1. Transfer operators on Hardy-Hilbert spaces

Given an analytic expanding circle map, we can associate with it a transfer op-

erator L given in (3.10), which was shown to be compact (Proposition 3.2.4) when

restricted to certain spaces of bounded holomorphic functions on a suitable annulus

around T. In this chapter it will be more convenient to consider the restriction of L to

Hardy-Hilbert spaces, since we can use their powerful structure as Hilbert spaces. We

start by introducing these spaces on annuli and disks, which will provide a convenient

setting for our analysis.

4.1.1. Hardy-Hilbert spaces. Throughout this chapter Ĉ = C ∪ {∞} denotes

the one point compactification of C. For r > 0 we use

Tr = {z ∈ C : |z| = r} ,

T = T1

to denote circles centred at 0, and

Dr = {z ∈ C : |z| < r} ,

D∞
r = {z ∈ Ĉ : |z| > r} ,

D = D1

to denote disks centred at 0 and ∞.
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We will use the notation L2(Tρ) = L2(Tρ, dθ/2π), where m = dθ/2π is the nor-

malised one-dimensional Lebesgue measure on Tρ. Finally, for U an open subset of Ĉ

we use Hol(U) for the space of holomorphic functions on U . We say f is holomorphic

at ∞ if f ◦ ς is holomorphic at 0 with ς(z) = 1/z.

Hardy-Hilbert spaces on disks and annuli are defined as follows.

Definition 4.1.1. For ρ > 0 and f : Tρ → C write

Mρ(f) =

∫ 2π

0
|f(ρeiθ)|2 dθ

2π
.

Then the Hardy-Hilbert spaces on Dr and Ar,R are given by

H2(Dr) =

{

f ∈ Hol(Dr) : sup
ρ↗r

Mρ(f) < ∞
}

,

and

H2(Ar,R) =

{

f ∈ Hol(Ar,R) : sup
ρ↗R

Mρ(f) + sup
ρ↘r

Mρ(f) < ∞
}

.

The Hardy-Hilbert space on the exterior disk D∞
R is defined accordingly, that is f ∈

H2(D∞
R ) if f ∈ Hol(D∞

R ) (or, equivalently, f ◦ς holomorphic on D1/R with ς(z) = 1/z)

and supρ↘R Mρ(f) < ∞. Finally, H2
0 (D

∞
R ) ⊂ H2(D∞

R ) denotes the subspace of

functions vanishing at infinity.

A comprehensive account of Hardy spaces over general domains is given in the

classic text [28]. A crisp treatment of Hardy spaces on the unit disk can be found in

[69, Ch. 17]), while a good reference for Hardy spaces on annuli is [79]. We shall now

collect a number of results which will be useful in what follows.

Any function in H2(U), where U is a disk or an annulus, can be extended to the

boundary in the following sense. For f ∈ H2(Dr) there is an f∗ ∈ L2(Tr) such that

lim
ρ↗r

f(ρeiθ) = f∗(reiθ) for a.e. θ,

and analogously for f ∈ H2(D∞
R ). Similarly, for f ∈ H2(Ar,R) there are f∗

1 ∈ L2(Tr)

and f∗
2 ∈ L2(TR), with limρ↘r f(ρeiθ) = f∗

1 (re
iθ) and limρ↗R f(ρeiθ) = f∗

2 (Reiθ) for

a.e. θ. It turns out that the spaces H2(Ar,R), H2(Dr) and H2(D∞
R ) are Hilbert spaces.

The next theorem summarises the properties of H2(Ar,R), with the cases of H2(Dr)

and H2(D∞
R ) being similar.

Theorem 4.1.2. (a) The space H2(Ar,R) is a Hilbert space with inner product

(f, g)H2(Ar,R) =

∫ 2π

0
f∗
1 (re

iθ)g∗1(re
iθ)

dθ

2π
+

∫ 2π

0
f∗
2 (Reiθ)g∗2(Reiθ)

dθ

2π
.

(b) An orthonormal basis for H2(Ar,R) is given by E = {en : n ∈ Z}, where

en(z) =
zn

dn
with dn =

√

r2n +R2n. (4.1)
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For f ∈ Hol(Ar,R) it follows that f ∈ H2(Ar,R) if and only if

f(z) =
∞
∑

n=−∞

cnen(z) with
∞
∑

n=−∞

|cn|2 < ∞,

where the coefficients are given by cn = cn(f) = (f, en)H2(Ar,R).

(c) Every f ∈ H2(Ar,R) satisfies ∥f∥2H2(Ar,R) = ∥f∗
1 ∥

2
L2(Tr)

+ ∥f∗
2 ∥

2
L2(TR), and

∥f∥2H2(Ar,R) = (f, f)H2(Ar,R) =
∞
∑

n=−∞

|cn|2.

Similar statements hold for H2(Dr), with inner product given by

(f, g)H2(Dr) =

∫ 2π

0
f∗(reiθ)g∗(reiθ)

dθ

2π
,

and analogously for H2(D∞
R ).

Notation 4.1.3. In order to avoid cumbersome notation, we shall write f(z)

instead of f∗(z) for z on the boundary of the domain.

4.1.2. Factorisation of transfer operators. We can now define transfer oper-

ators associated to analytic expanding circle maps on suitable Hardy-Hilbert spaces.

Let τ be an analytic expanding circle map. The expansivity of τ and Lemma 3.2.2

allow us to choose A0, A′ and A in A with

A0 ⊂⊂ A′ ⊂⊂ A and τ(∂A0) ∩ cl(A) = ∅. (4.2)

As we shall see presently, by adapting the factorisation argument explained in

Section 1.4 and applied in Section 3.2, the above choices of the annuli guarantee

that the associated transfer operator L in (3.10) is a well-defined linear operator

which maps H2(A) compactly to itself. We can write L = L̃J , where L̃ : H∞(A′) →
H2(A) is a lifted transfer operator given by the same functional expression (3.10) and

J : H2(A) → H∞(A′) is the canonical embedding:

H∞(A′)

L̃

!!❏
❏

❏

❏

❏

❏

❏

❏

❏

H2(A)
!
"

J

""

L
## H2(A)

Note that compared to the diagram (1.19), we use H∞(A′) instead of H2(A′) as this

choice allows for an easy proof of continuity of L̃ in Lemma 4.1.4.

Let R,R′ denote the radii of the circles forming the ‘exterior’ boundaries, and r, r′

the radii of the circles forming the ‘interior’ boundaries of A and A′, respectively, that

is, A = Ar,R and A′ = Ar′,R′ .

Lemma 4.1.4. The transfer operator L̃ given by (3.10) maps H∞(A′) continuously

to H2(A).
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Proof. We can factorise L̃ as L̃ = Ĵ L̂, where L̂ : H∞(A′) → H∞(A), given by

the functional expression (3.10), is continuous by Lemma 3.2.3, and Ĵ : H∞(A) ↪→
H2(A) is the canonical embedding. !

Next, we establish compactness of J : H2(A) ↪→ H∞(A′) given by

(J f)(z) = f(z) for z ∈ A′.

Let {en : n ∈ Z} be the orthonormal basis for H2(A) given by (4.1), then any f ∈
H2(A) can be uniquely expressed as f =

∑

n∈Z cn(f)en. For N ∈ N define the finite

rank operator JN : H2(A) → H∞(A′) by

(JNf)(z) =
N−1
∑

n=−N+1

cn(f)en(z) for z ∈ A′.

Lemma 4.1.5. Let J and JN be as above. Then

lim
N→∞

∥J − JN∥H2(A)→H∞(A′) = 0.

In particular, the embedding J is compact.

Proof. For z ∈ A′, it follows by the Cauchy-Schwarz inequality that

|(J f)(z)− (JNf)(z)| ≤

⎛

⎝

∑

|n|≥N

|cn(f)|2
⎞

⎠

1/2⎛

⎝

∑

|n|≥N

|en(z)|2
⎞

⎠

1/2

≤ ∥f∥H2(A)

⎛

⎝

∑

|n|≥N

|zn|2

r2n +R2n

⎞

⎠

1/2

≤ ∥f∥H2(A)

⎛

⎝

∑

n≥N

∣

∣

∣

z

R

∣

∣

∣

2n
+
∑

n≥N

∣

∣

∣

r

z

∣

∣

∣

2n

⎞

⎠

1/2

.

Thus

∥J f − JNf∥H∞(A′) ≤ ∥f∥H2(A)

(

(

R′

R

)2N 1

1− (R
′

R )2
+
( r

r′

)2N 1

1− ( r
r′ )

2

)1/2

,

and the assertions follow. !

The factorisation L = L̃J together with Lemmas 4.1.4 and 4.1.5 now imply the

following result.

Proposition 4.1.6. The transfer operator L : H2(A) → H2(A) given by the func-

tional expression (3.10) is compact.

4.2. Adjoint operator

A central step in showing our main result is to find an appropriate representation

of the dual space on which the adjoint of the transfer operator has a simple structure.
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For the remainder of this section we set A = Ar,R and denote by H2(A)∗ the

strong dual of H2(A), that is, the space of continuous linear functionals on H2(A)

equipped with the topology of uniform convergence on the unit ball. We will show

that H2(A)∗ is isomorphic to the topological direct sum H2(Dr)⊕H2
0 (D

∞
R ), equipped

with the norm ∥(h1, h2)∥2 = ∥h1∥2H2(Dr) + ∥h2∥2H2
0 (D

∞
R ). Similar representations of the

duals of Hardy spaces for multiply connected regions can be found in [68, Prop. 3].

The present setup is sufficiently simple to allow for a short proof of the representation.

Proposition 4.2.1. The dual space H2(A)∗ is isomorphic to H2(Dr)⊕H2
0 (D

∞
R )

with the isomorphism given by

J : H2(Dr)⊕H2
0 (D

∞
R ) → H2(A)∗

(h1, h2) #→ l,

where

l(f) =
1

2πi

∫

Tr

f(z)h1(z) dz +
1

2πi

∫

TR

f(z)h2(z) dz (f ∈ H2(A)). (4.3)

Proof. We will first show that (4.3) defines a continuous functional l ∈ H2(A)∗

and that J is a bounded linear operator. In order to see this note that for any

(h1, h2) ∈ H2(Dr)⊕H2
0 (D

∞
R ) the linear functional l = J(h1, h2) is bounded, since for

any f ∈ H2(A) with ∥f∥H2(A) ≤ 1

|l(f)| ≤
(

r ∥h1∥H2(Dr) +R ∥h2∥H2
0 (D

∞
R )

)

.

It follows that

∥J(h1, h2)∥H2(A)∗ ≤
√

r2 +R2
√

∥h1∥2H2(Dr) + ∥h2∥2H2
0 (D

∞
R )

and ∥J∥H2(Dr)⊕H2
0 (D

∞
R )→H2(A)∗ ≤

√
r2 +R2. Hence, J is well defined and bounded.

For injectivity, we suppose that l = J(h1, h2) = 0 and show that h1 = 0 and

h2 = 0. In order to see this note that any (h1, h2) ∈ H2(Dr) ⊕ H2
0 (D

∞
R ) can be

written as h1(z) =
∑∞

n=0 anz
n and h2(z) =

∑∞
n=1 a−nz−n with suitable coefficients

an ∈ C. Now let

E = {en : n ∈ Z} with en(z) =
zn

dn
denote the orthonormal basis of H2(A) given in (4.1). A short calculation using

Lebesgue dominated convergence shows that

0 = (J(h1, h2))(en) =
a−n−1

dn
for all n ∈ Z, (4.4)

which implies h1 = 0 and h2 = 0. Thus J is injective.

Finally, in order to show that J is surjective, fix l ∈ H2(A)∗. We will construct

(h1, h2) ∈ H2(Dr)⊕H2
0 (D

∞
R ) such that J(h1, h2) = l.

By the Riesz representation theorem there is a unique g ∈ H2(A) such that

l(f) = (f, g)H2(A) for all f ∈ H2(A). Moreover, g can be uniquely expressed as
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g =
∑

n∈Z cn(g)en. Now define

h1(z) =
∞
∑

n=0

c−n−1(g)d−n−1z
n for z ∈ Dr,

h2(z) =
∞
∑

n=1

cn−1(g)dn−1z
−n for z ∈ D∞

R .

(4.5)

Using ∥g∥2H2(A) =
∑

n∈Z |cn(g)|2 < ∞, it follows that h1 ∈ H2(Dr) and h2 ∈ H2
0 (D

∞
R ).

Combining (4.4) and (4.5) we obtain

(J(h1, h2))(en) =
a−n−1

dn
=

cn(g)dn
dn

= cn(g) = (en, g)H2(A)

for every n ∈ Z. Since the above equality also holds for all finite linear combinations

of elements in E , the continuity of J implies

(J(h1, h2))(f) = (f, g)H2(A) = l(f)

for all f ∈ H2(A). Thus J is surjective. !

Remark 4.2.2. The inverse J−1 of J can be obtained using the kernelKz ∈ H2(A)

defined by Kz(w) = 1/(z − w) for z ∈ Ĉ \ cl(A). More precisely, J−1 is given by

l #→ (h1, h2), where h1(z) = l(−Kz) for z ∈ Dr and h2(z) = l(Kz) for z ∈ D∞
R , see

also [68, p. 159]. The inverse J−1 is bounded by the bounded inverse theorem, and

its norm can be estimated directly by using (4.5):

∥

∥J−1l
∥

∥

2

H2(Dr)⊕H2
0 (D

∞
R )

= ∥h1∥2H2(Dr) + ∥h2∥2H2
0 (D

∞
R ) ≤

(

1

r2
+

1

R2

)

∥l∥2H2(A)∗ .

Returning to the setting of Section 4.1.2, let τ be an analytic expanding circle

map and A = Ar,R ∈ A an annulus satisfying (4.2) such that the associated transfer

operator L : H2(A) → H2(A) is well defined and compact. We shall first assume that

τ is orientation-preserving and comment on the orientation-reversing case at the end

of this section. Using the representation of the dual space H2(A)∗ obtained in the

previous lemma, we shall shortly derive an explicit form for the adjoint operator of L.
Before doing so we require some more notation. Define C(r) : H2(Dr) → L2(Tr)

by

(C(r)h)(z) = h(τ(z)) for z ∈ Tr , (4.6)

and C(R) : H2
0 (D

∞
R ) → L2(TR) by

(C(R)h)(z) = h(τ(z)) for z ∈ TR . (4.7)

These operators could be called ‘composition operators’, but we restrict the use of this

term to the case of operators mapping the space of holomorphic functions to itself,

see Section 4.3. It turns out that C(r) and C(R) are compact, the proof of which relies

on the following fact.



4.2. ADJOINT OPERATOR 57

Lemma 4.2.3. Let K be a compact subset of a disk D in C. Then there exists a

constant cK depending on K only such that for any f ∈ H2(D)

sup
z∈K

|f(z)| ≤ cK ∥f∥H2(D) .

Proof. This follows, for example, from [12, Lem. 2.9], or by a calculation using

the Cauchy-Schwarz inequality, similar to the proof of Lemma 4.1.5.

Let R be the radius of the disk D, then there exists r < R such that K ⊆ Dr.

Denote by {en : n ∈ N} with en(z) = zn/Rn an orthonormal basis of H2(D). Then

for any z ∈ K we have

|f(z)| ≤
∞
∑

n=0

|cn(f)en(z)| ≤
(

∞
∑

n=0

|cn(f)|2
)1/2( ∞

∑

n=0

|en(z)|2
)1/2

≤
∥f∥H2(D)

1− ( r
R)

2
,

which finishes the proof with cK = 1
1−(r/R)2 . !

We now have the following.

Lemma 4.2.4. The operators C(r) and C(R) are compact.

Proof. The choice of A = Ar,R in (4.2) implies that r0 = supz∈Tr
|τ(z)| < r, and

we can choose a disk Dr′ with Dr0 ⊂⊂ Dr′ ⊂⊂ Dr.

Let C̃(r) : H2(Dr′) → L2(Tr) be defined by the functional expression as in (4.6),

but now considered on H2(Dr′). The operator is continuous since
∥

∥

∥
C̃(r)h

∥

∥

∥

L2(Tr)
≤ sup

z∈τ(Tr)
|h(z)| ≤ sup

z∈cl(Dr0 )
|h(z)| ≤ cK ∥h∥H2(Dr′ )

,

where we have used Lemma 4.2.3 with K = cl(Dr0). The lemma follows since we can

write C(r) = C̃(r)J̃ with J̃ : H2(Dr) ↪→ H2(Dr′) denoting the canonical embedding,

which is compact (see, for example, [12, Lem. 2.9]). The argument for C(R) is similar.

!

Next, we need to define certain projection operators on L2(Tρ). For any g ∈ L2(Tρ)

we can write g(z) =
∑

n∈Z gnz
n, so that g = g+ + g− with g+(z) =

∑∞
n=0 gnz

n and

g−(z) =
∑∞

n=1 g−nz−n. Since ∥g∥2L2(Tρ) =
∑∞

n=−∞ |gn|2ρ2n < ∞, the functions g+
and g− can be viewed as functions in H2(Dρ) and H2

0 (D
∞
ρ ), respectively. Then we

define the bounded projection operators Π(ρ)
+ : L2(Tρ) → H2(Dρ) and Π(ρ)

− : L2(Tρ) →
H2

0 (D
∞
ρ ) by

Π(ρ)
+ (g) = g+ and Π(ρ)

− (g) = g− . (4.8)

Finally, let L∗ : H2(A)∗ → H2(A)∗ denote the adjoint operator of L in the Banach

space sense, that is, (L∗l)(f) = l(Lf) for all l ∈ H2(A)∗ and f ∈ H2(A). The following

proposition provides an explicit representation L′ of L∗ via

L′ = J−1L∗J ,

as an operator on H2(Dr)⊕H2
0 (D

∞
R ) given by compositions of C(ρ), Π(ρ)

− and Π(ρ)
+ for

ρ = r,R.
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Proposition 4.2.5. Let L : H2(A) → H2(A) be the transfer operator associated

to an analytic orientation-preserving expanding circle map τ , with A ∈ A as in (4.2).

Then the isomorphism J conjugates the adjoint L∗ of L to

L′ : H2(Dr)⊕H2
0 (D

∞
R ) → H2(Dr)⊕H2

0 (D
∞
R )

given1 by

L′ =

⎛

⎝

Π(r)
+ C(r) Π(R)

+ C(R)

Π(r)
− C(r) Π(R)

− C(R)

⎞

⎠ , (4.9)

that is L′ = J−1L∗J .

Proof. We want to show that L∗J = JL′, that is,

(L∗J(h1, h2))(f) = (JL′(h1, h2))(f) (4.10)

for all (h1, h2) ∈ H2(Dr)⊕H2
0 (D

∞
R ) and f ∈ H2(A). For any such (h1, h2) and f , the

adjoint property yields

(L∗J(h1, h2))(f) = (J(h1, h2))(Lf)

=
1

2πi

∫

Tr

(Lf)(z)h1(z) dz +
1

2πi

∫

TR

(Lf)(z)h2(z) dz .

Next we shall use the integral definition of L on T, see (3.11), and express the

above integrands in terms of compositions of h1 and h2 with τ . This is first done for

monomials forming a basis of H2(A) and H2(Dr)⊕H2
0 (D

∞
R ). These are holomorphic

on cl(A) which allows us to deform the contours of integration to T.

More precisely, let a basis for H2(Dr) ⊕ H2
0 (D

∞
R ) be given by P = {(pn, 0) :

n ∈ N0} ∪ {(0, p−n) : n ∈ N} with pn(z) = zn, where pn ∈ H2(Dr) if n ≥ 0 and

pn ∈ H2
0 (D

∞
R ) if n < 0. Take f ∈ E , where E is the basis for H2(A) given by (4.1).

For n ∈ N0 and (h1, h2) = (pn, 0) ∈ P we get

(L∗J(h1, 0))(f) =
1

2πi

∫

Tr

(Lf)(z)h1(z) dz

(a)
=

1

2πi

∫

T

(Lf)(z)h1(z) dz

(b)
=

1

2πi

∫

T

f(z)(h1 ◦ τ)(z) dz

(c)
=

1

2πi

∫

Tr

f(z)(h1 ◦ τ)(z) dz .

1Note that H2(DR) can be viewed as a subspace of H2(Dr), and similarly H2
0 (D

∞
r ) as a subspace of

H2
0 (D

∞

R ). Thus the off-diagonal elements of L′ are well defined.
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Here, equalities (a) and (c) follow since the integrands are analytic on A and equality

(b) follows by definition of L (see also (3.11)). Then, by the definition of Π(r)
+ and Π(r)

− ,

(L∗J(h1, 0))(f)

=
1

2πi

∫

Tr

f(z)(Π(r)
+ (h1 ◦ τ))(z) dz +

1

2πi

∫

Tr

f(z)(Π(r)
− (h1 ◦ τ))(z) dz

=
1

2πi

∫

Tr

f(z)(Π(r)
+ (h1 ◦ τ))(z) dz +

1

2πi

∫

TR

f(z)(Π(r)
− (h1 ◦ τ))(z) dz

=(JL′(h1, 0))(f) .

The penultimate equality follows from the fact that Π(r)
− (h1 ◦ τ) ∈ H2

0 (D
∞
r ).

Analogously, for n ∈ N and (h1, h2) = (0, p−n) ∈ P, the same argument shows

(L∗J(0, h2))(f) = (JL′(0, h2))(f) .

Hence, for f ∈ E , by linearity (4.10) holds for all finite linear combinations of basis

elements (h1, h2) in P. Since these form a dense subspace of H2(Dr) ⊕ H2
0 (D

∞
R ),

and L∗, L′ and J are continuous operators, equality (4.10) holds for all (h1, h2) ∈
H2(Dr) ⊕H2

0 (D
∞
R ) and f ∈ E . By continuity, this extends to all f ∈ H2(A), which

completes the proof. !

Remark 4.2.6. Lemma 4.2.4 and continuity of the projection operators in (4.8)

imply that L′ is compact. Note, however, that this also follows from compactness of

L guaranteed by the choice of A in (4.2).

Remark 4.2.7. The above proposition requires only minor modifications if τ is

assumed to be orientation-reversing. The operators C(r) and C(R) in (4.6) and (4.7)

are replaced with Ĉ(r) : H2(Dr) → L2(TR) and Ĉ(R) : H2
0 (D

∞
R ) → L2(Tr), defined by

(Ĉ(r)h)(z) = h(τ(z)) for z ∈ TR

and

(Ĉ(R)h)(z) = h(τ(z)) for z ∈ Tr ,

which are compact by the same argument as in Lemma 4.2.4. The adjoint operator

in the proposition is then represented by

L′ =

⎛

⎝

Π(R)
+ Ĉ(r) Π(r)

+ Ĉ(R)

Π(R)
− Ĉ(r) Π(r)

− Ĉ(R)

⎞

⎠ .

The explicit representation of the adjoint operator in the above proposition facil-

itates the study of spectral properties for analytic expanding circle maps, and even

allows us to determine the entire correlation spectrum explicitly for finite Blaschke

products.
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4.3. Spectrum for Blaschke products

Having discussed transfer operators L associated with analytic expanding circle

maps and a convenient representation of the corresponding adjoint operators (Propo-

sition 4.2.5), we shall now use this representation to obtain the full spectrum of L for

finite Blaschke products, a class of circle maps defined as follows (see, for example,

[60, p. 5-3]).

Definition 4.3.1. For n ≥ 2, let {a1, . . . , an} be a finite set of complex numbers

in the open unit disk D. A finite Blaschke product is a map of the form

B(z) = C
n
∏

i=1

z − ai
1− aiz

, (4.11)

where |C| = 1.

It follows from the definition that

(i) B is a meromorphic function on Ĉ with zeros ai and poles 1/ai;

(ii) B is holomorphic on a neighbourhood of D with B(D) = D and B(T) = T.

Note also that a function f is holomorphic on an open neighbourhood of D with

f(T) = T if and only if f is a finite Blaschke product (see, for example, [19, Ex. 6.12]).

Let τ : T → T denote the restriction of a finite Blaschke product B to T. A short

calculation shows that τ is expanding if
∑n

i=1(1−|ai|)/(1+|ai|) > 1 (see [55, Corollary

to Prop. 1] for details). Expansiveness of τ is related to the nature of the fixed points

of B, as the following result shows.

Proposition 4.3.2. Let B and τ be as above and |τ ′(z)| > 1 for all z ∈ T. Then

B has exactly n− 1 fixed points on T, which are repelling, and two fixed points z0 ∈ D

and ẑ0 = 1/z0 ∈ Ĉ \ D, which are attracting.

Moreover, there exists a unique τ -invariant probability measure µ on T, absolutely

continuous with respect to m, with the density ϱ(z) = (1− |z0|2)/|z − z0|2 for z ∈ T.

Proof. Using expansivity of τ , Brouwer’s fixed point theorem and the Schwarz

lemma imply the existence of an attracting fixed point z0 ∈ D. Since B(z)B(1/z) = 1,

another attracting fixed point is given by ẑ0 = 1/z0 ∈ Ĉ \D. As τ is an expanding n-

covering, there are exactly n−1 (repelling) fixed points on T. For details see [65, Prop.

2.1] and [88]. The second claim follows from [55, Thm. 1], with the explicit form of

the invariant density given by a Poisson kernel, obtained using analyticity of τ on D

and the uniqueness theorem of harmonic functions applied to Poisson integrals. !

Crucial for the proof of our main theorem is the notion of a composition operator,

which we briefly recall.

Definition 4.3.3. Let U be an open region in Ĉ. If ψ : U → U is holomorphic,

then Cψ : Hol(U) → Hol(U) defined by Cψf = f ◦ ψ is called a composition operator

(with symbol ψ).
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Note that in the literature the term ‘composition operator’ is mostly used in the

context of holomorphic functions. The operators in (4.6) do not formally fall into this

category, but will turn out to be composition operators for symbols which are finite

Blaschke products.

We are now able to state our main result.

Theorem 4.3.4. Let B be a finite Blaschke product such that τ = B|T is an

analytic expanding circle map. Then

(a) the transfer operator L : H2(A) → H2(A) associated with τ is well defined and

compact for some annulus A ∈ A, and

(b) the spectrum of L : H2(A) → H2(A) is given by

σ(L) = {1} ∪ {λ(z0)n : n ∈ N} ∪ {λ(ẑ0)n : n ∈ N} ∪ {0} , (4.12)

where λ(z0) and λ(ẑ0) = λ(z0) are the multipliers2 of the unique fixed points z0
and ẑ0 of B in D and Ĉ \ D, respectively.

Moreover, the algebraic multiplicity of the leading eigenvalue is 1, while for each other

nonzero eigenvalue the algebraic (and geometric) multiplicity is equal to the number

of its occurrences in the list (4.12).

Proof. The first assertion is obvious, as τ is an analytic expanding circle map

and we can choose A = Ar,R ∈ A as in (4.2) such that L is well defined and compact

by the results in Section 4.1.2.

For the second claim, we will use the fact that the spectrum of L coincides with

that of its adjoint L∗, which together with the structure of the representation L′ of

L∗ will allow us to deduce (4.12).

We start by observing that for the chosen A we have B(∂A) ∩ cl(A) = ∅, as

well as B(Dr) ⊂⊂ Dr and B(D∞
R ) ⊂⊂ D∞

R . It follows that f ◦ B ∈ H2(Dr) for any

f ∈ H2(Dr), and f ◦ B ∈ H2(D∞
R ) for any f ∈ H2(D∞

R ), so that C(r)
B f = f ◦ B and

C(R)
B f = f ◦B define composition operators on H2(Dr) and H2(D∞

R ), respectively. It

is a standard fact that B(Dr) ⊂⊂ Dr guarantees compactness of C(r)
B (see, for example,

[24, pp. 128-129]), and similarly for C(R)
B . It is also well known (see [59, Lem. 7.10]

or [24, Thm. 7.20]) that all eigenvalues of a compact composition operator Cψ are

simple and are given by the nonnegative integer powers of the multiplier of the unique

attracting fixed point of ψ. Hence,

σ(C(r)
B ) = {λ(z0)n : n ∈ N0} ∪ {0}

and

σ(C(R)
B ) = {λ(ẑ0)n : n ∈ N0} ∪ {0} ,

where z0 and ẑ0 are the unique attracting fixed points of B in Dr and D∞
R , respectively

(see Proposition 4.3.2).

2Recall that the multiplier λ(z∗) of a fixed point z∗ of a rational map R is given by R′(z∗) if z∗ ∈ C

and 1/R′(z∗) if z∗ = ∞, see [14, p. 41]. For Blaschke products the equality λ(ẑ0) = λ(z0) follows
from a straightforward calculation.



4.3. SPECTRUM FOR BLASCHKE PRODUCTS 62

We now explain how to use these observations to determine the spectrum of L′

given in (4.9). The projection Π(r)
+ onto H2(Dr) given in (4.8) acts as the identity

I(r) on H2(Dr) because any f ∈ H2(Dr) can be written as f(z) =
∑∞

n=0 anz
n. Since

C(r)
B (H2(Dr)) ⊆ H2(Dr) we have Π

(r)
+ C(r)

B = C(r)
B , and consequently Π(r)

− C(r)
B = (I(r)−

Π(r)
+ )C(r)

B = 0. Thus the operator L′ leaves H2(Dr)⊕ {0} invariant and is given by

L′ =

⎛

⎝

C(r)
B Π(R)

+ C(R)
B

0 Π(R)
− C(R)

B

⎞

⎠ . (4.13)

Further, any f in H2
0 (D

∞
R ) vanishes at ∞, but not necessarily C(R)

B f . In particular,

(C(R)
B f)(∞) = f(B(∞)) = 0 for all f ∈ H2

0 (D
∞
R ) only if B(∞) = ∞, so that H2

0 (D
∞
R )

is not invariant under C(R)
B for B(∞) ̸= ∞. Thus, the operator Π(R)

− C(R)
B is not

generally a composition operator on H2
0 (D

∞
R ) as Π(R)

− C(R)
B f = C(R)

B f − Π(R)
+ C(R)

B f =

C(R)
B f−f(B(∞)), but we can relate its spectrum to the spectrum of C(R)

B on H2(D∞
R ).

More precisely,

σ(Π(R)
− C(R)

B ) = σ(C(R)
B ) \ {1} , (4.14)

as we shall see below. Then, using (4.14) the second assertion of the theorem follows,

since

σ(L′) = σ(C(r)
B ) ∪ σ(Π(R)

− C(R)
B )

= {λ(z0)n : n ∈ N0} ∪ {λ(ẑ0)n : n ∈ N} ∪ {0} ,

and σ(L) = σ(L∗) = σ(L′). The assertion concerning multiplicities follows from the

simplicity of eigenvalues of compact composition operators.

It remains to prove (4.14). For brevity, we drop the superscript (R) from Π(R)
− ,

Π(R)
+ and C(R)

B since we only consider functions in H2(D∞
R ) in what follows. Observe

that for f ∈ H2(D∞
R ), we have (Π+f)(z) = f(∞), which implies

CBΠ+ = Π+ and Π−CB = Π−CBΠ− . (4.15)

Note that 1 is an eigenvalue of CB if and only if the corresponding eigenfunction

is constant. Take µ ∈ σ(CB) with µ(1 − µ) ̸= 0. Since CB is compact, there is a

nonzero f ∈ H2(D∞
R ) with CBf = µf . The second equality in (4.15) now implies

Π−CBΠ−f = µΠ−f . But since µ ̸= 1 the eigenvector f is nonconstant, so we have

0 ̸= Π−f ∈ H2
0 (D

∞
R ) and thus µ ∈ σ(Π−CB).

To show the converse inclusion, take µ ∈ σ(Π−CB) with µ ̸= 0. Since Π−CB is

compact, there is a nonzero f ∈ H2
0 (D

∞
R ) with Π−CBf = µf . First observe that3

µ ̸= 1. Next we note that if µ(µ− 1) ̸= 0, then (1− µ)f −Π+CBf ̸= 0 (for otherwise

f would be zero). Finally, we use (4.15) to show that (1 − µ)f − Π+CBf is an

3In order to see this, note that otherwise Π−CBf = f , which implies f ◦ B − f = const. However
f(B(ẑ0)) − f(ẑ0) = 0, which implies f = f ◦ B. Thus f = const, so Π−CBf = 0, contradicting the
fact that µ ̸= 0.
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eigenfunction of CB with eigenvalue µ:

CB ((1− µ)f −Π+CBf) = (1− µ)(CBf + (µf −Π−CBf))− CBΠ+CBf

= µ(1− µ)f + (1− µ)(I −Π−)CBf −Π+CBf

= µ ((1− µ)f −Π+CBf) .

Thus σ(Π−CB) = σ(CB) \ {1}, as claimed. !

Remark 4.3.5. Note that Π(R)
+ C(R)

B is an operator of rank at most one. To see

this let en(z) = zn, then (Π(R)
+ C(R)

B )(e−n) = (B(∞))−ne0 for n ∈ N. If B(∞) =

∞, meaning at least one of the ai in (4.11) is equal to 0, then Π(R)
+ C(R)

B = 0 and

C(R)
B (H2

0 (D
∞
R )) ⊆ H2

0 (D
∞
R ). With slight abuse of notation, we keep writing C(R)

B for

the restriction to H2
0 (D

∞
R ), and obtain a block diagonal matrix structure of L′ given

by

L′ =

⎛

⎝

C(r)
B 0

0 C(R)
B

⎞

⎠ . (4.16)

Theorem 4.3.4 can now be applied to the expanding circle maps occurring in

Chapter 3.

Example 4.3.6. The simplest example is the map B(z) = zm for an integer m ≥ 2.

The proof in [7, Ex. 2.15] that the spectrum is σ(L) = {0, 1} uses exponential decay

of Fourier coefficients. As B has two attracting fixed points z0 = 0 and ẑ0 = ∞ with

λ(z0) = λ(ẑ0) = 0, this statement now simply follows from Theorem 4.3.4.

Example 4.3.7. The family of maps B(z) = z(µ − z)/(1 − µz) from (3.18) also

belongs to the class of finite Blaschke products, for which the spectrum can now be

deduced directly. The restriction B|T is an expanding circle map for any µ ∈ D. The

attracting fixed points are z0 = 0 and ẑ0 = ∞ with λ(z0) = µ and λ(ẑ0) = µ. Thus

σ(L) = {1} ∪ {µn : n ∈ N} ∪ {µn : n ∈ N} ∪ {0} .

To conclude this section, let us mention that the expansivity condition for τ in

Theorem 4.3.4 can be weakened as it is sufficient for τ to be eventually expanding. An

analytic circle map τ : T → T is called eventually expanding if it has an iterate that is

expanding, that is, there exists an N ∈ N such that infz∈T |(τ (N))′(z)| > 1. If B is a

Blaschke map and τ = B|T, then |τ ′(z)| =
∑

i(1−|ai|2)/|z−ai|2 ≥
∑

i(1−|ai|)/(1+|ai|)
for z ∈ T, see [55]. Therefore, if 0 is fixed by B, then |τ ′| > 1. On the other hand,

any Blaschke map B̃ fixing z0 ∈ D is analytically conjugate to an expanding Blaschke

map B with B(0) = 0, via B = σ ◦ B̃ ◦ σ where σ is the Möbius map given by

σ(z) = σ−1(z) = (z0 − z)/(1 − z0z). It follows that |(B̃(N))′| > 1 for some N . The

conjugacy σ can then be used to define a transfer operator for B̃|T on a Hardy-Hilbert

space H2(Ã) over a (topological) annulus Ã (see [28, §10.1 and §10.5] for definitions)
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given by Ã = σ(A) with A ∈ A a suitable annulus such that the transfer operator

associated to B is well-defined and compact. By adapting arguments from Section

4.1.2 one can show its boundedness and compactness. Further, its spectrum coincides

with the spectrum of L associated to B|T in Theorem 4.3.4.

4.4. Application: Arbitrarily fast exponential mixing

We shall now return to the motivation of this thesis. By applying Theorem 4.3.4

to a particular family of expanding analytic maps, we obtain insight into the question

of the relation between exponential mixing rates and Lyapunov exponents, considered

in Chapter 2. This family is given by the finite Blaschke products of the form

B(z) = (−1)mzm
(z − b)

1− bz
(4.17)

for b ∈ (−1, 1) and fixed integer m ≥ 2. Then τ = B|T is an expanding (m + 1)-to-1

circle map (see Figure 4.1 for m = 2). As the multipliers of the attracting fixed points

of B are vanishing as in Example 4.3.6, we get σ(L) = {0, 1}.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

b = −0.95
b = 0
b = 0.95

Figure 4.1. The circle map τ , as the restriction of B in (4.17) for
m = 2, projected onto the interval [−1, 1] for b = −0.95, 0 and 0.95.

It turns out that maps of the form (4.17) considered as interval maps T : I → I

provide a class of nonlinear expanding maps for which the mixing rate α is not bounded

in terms of the Lyapunov exponent Λ in the vein of Proposition 2.2.9. To show this, we

shall deduce the spectrum of the transfer operator associated to T using the procedure

described in Section 3.4, in particular using Lemma 3.4.2. Before doing so, we need to

consider the minor technical detail, that in Lemma 3.4.2 the operator LT is considered

on H∞(A), whereas in this chapter L is defined on H2(A). However, the spectra of

LT and L coincide as the next lemma shows.

Lemma 4.4.1. Let L and LT be defined as above, then σ(L) = σ(LT).

Proof. Observe that the canonical embedding J : H∞(A) → H2(A) is continuous

as ∥Jf∥H2(A) ≤
√
2 for any f ∈ H∞(A) with ∥f∥H∞(A) = 1. It has dense range since
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H∞(A) contains the space of Laurent polynomials, which is dense in H2(A). Then,

as J intertwines L and LT, that is JLT = LJ , we obtain σ(L) = σ(LT) by [35] and

the fact that both have discrete spectra. !

Now, to compute the multipliers of B in (4.17), note that

B′(z) = (−1)mmzm−1A(z) + (−1)mzmA′(z) ,

where A(z) = (z − b)/(1 − bz) and A′(z) = (1 − b2)/(1 − bz)2. For any m, the point

−1 is fixed by τ and

τ ′(−1) = B′(−1) =
(m+ 1) + (m− 1)b

1 + b
.

We can consider the map T : I → I on the interval I = [−1, 1] arising from τ via

p◦T = τ ◦p with a projection p : I → T given by p(x) = eiπx, which maps the interval

end point −1 to the fixed point −1, and T ′(−1) = τ ′(−1). Let LI : H∞(D) → H∞(D)

be the transfer operator associated to T in (3.22) with K = m+ 1. By Lemma 3.4.2

the eigenvalues of LI can be divided into two classes, those that are eigenvalues of LT

and those given by the inverse of the multiplier of the fixed point −1. Hence

σ(LI) = {1, 0} ∪
{(

1 + b

(m+ 1) + (m− 1)b

)n

: n ∈ N

}

.

Clearly, (1 + b)/((m+ 1) + (m− 1)b) tends to 0 as b → −1.

In summary, for any m ≥ 2 one can construct analytic expanding full branch inter-

val maps with m+ 1 branches (fixing an interval endpoint), such that the subleading

eigenvalue of the associated transfer operator is arbitrarily close to zero. This an-

swers a question raised by M. Pollicott (private communication), whether expanding

interval maps can have arbitrarily small nonzero second eigenvalue.

In order to obtain Lyapunov exponents, note that by Proposition 4.3.2 any map

T arising from a finite Blaschke product B (expanding on T) has a unique ergodic

acip measure µ whose density with respect to the normalised Lebesgue measure on

the interval [−1, 1] is given by

ϱ(x) =
1− |z0|2

2|eiπx − z0|2
,

where z0 is the attracting fixed point of B in D. The map B in (4.17) has the fixed

point z0 = 0, thus its acip measure is the Lebesgue measure itself. Hence, for any b ∈
(−1, 1) the Lyapunov exponent of T with respect to this invariant measure is given by

Λ = (1/2)
∫

I ln |T
′(x)| dx, or equally (2π)−1

∫ π
−π ln |B

′(eiθ)| dθ, using B(eiπx) = eiπT (x).

Interestingly, Λ can be calculated explicitly by applying Jensen’s formula4 to B′.

4Jensen’s formula reads ln |f(0)| = (2π)−1
∫ π

−π
ln |f(eiθ)| dθ +

∑

i ln |ai|, where f is holomorphic on a

neighbourhood of D, f(0) ̸= 0 and ai are the zeros of f in D, see [89, §3.61 and 3.62]. For a Blaschke
map B with B(0) = 0, writing B′(z) = zl ·f(z) with f(0) ̸= 0, we get Λ = (2π)−1

∫ π

−π
ln |B′(eiθ)| dθ =

ln |f(0)| −
∑

i ln |ci| with ci the critical points of B inside D. If 0 is not fixed by B, then Λ can be
calculated similarly using the Poisson-Jensen formula .
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Figure 4.2. Eigenvalues of LI for the interval map T arising from B
in (4.17) with m = 2 for b ∈ (−1, 1) (solid lines), in logarithmic scale.
The dashed line shows exp(−Λ), see (4.18).

We now restrict to the case m = 2, where this calculation yields

Λ = ln

(

1

2

(

3 + b2 +
√

(1− b2)(9− b2)
)

)

, (4.18)

see Figure 4.2.

Clearly, Λ tends to ln(2) as b → −1. On the other hand, with λ2 = λ2(LI) the

second largest eigenvalue of LI , the mixing rate on H∞(D) denoted by α = αH∞(D)

as in (1.14) is given by α = − lnλ2 = − ln ((1 + b)/(3 + b)). Then, α tends to infinity

as b → −1. Crucially, α is not bounded in terms of Λ as b → −1, unlike the case of

piecewise linear Markov maps in Proposition 2.2.9, where a bound α ≤ 2Λ has been

established.

Although the Lyapunov exponent does not provide a bound for the mixing rate,

interestingly its effect can be observed in the decay of a correlation function on the

short time scale. Note that for b close to −1, the map T closely resembles a shifted

version of the doubling map, which is the pointwise limit of T as b → −1. This

is reflected in the shape of the correlation function, in the sense that correlations

decay exponentially with the rate ln(2) on a short time scale, prior to reaching the

asymptotic rate determined by the second largest eigenvalue of LI .

To illustrate this, let us look numerically at the autocorrelation function for the

observables f(x) = g(x) = x, given by

Cf,g(n) =
1

2

∫

I
f(x) · (g ◦ Tn)(x) dx . (4.19)

It is straightforward but slightly tedious to work out these integrals numerically

to high precision5. The result is displayed in Figure 4.3. The asymptotic decay of

5Given n, one computes cylinder sets of generation n and then performs the integral over each of these
intervals with a suitable integration routine. For that purpose we have used a quadruple precision
version of the QUADPACK routines [1].
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Figure 4.3. Autocorrelation function (4.19) of the map T arising from
B in (4.17) for different values of b (symbols, with dashed lines as guide
for the eye), on logarithmic scale. Solid straight lines indicate the
asymptotic decay as computed from the subleading eigenvalue of LI .
The dashed straight line displays the correlation function Cx,x(n) =
−1/(6× 2n) of the pointwise limit map as b → −1.

the correlation function is determined by the subleading eigenvalue (1 + b)/(3 + b).

However, as the parameter b approaches −1 the autocorrelation function develops a

pronounced transient exponential shape which follows the correlation decay of the

shifted doubling map prior to asymptotically approaching the actual rate. The tran-

sition time scale, which is relevant in applications, can be estimated by an heuristic

argument, see [84].

While the average expansion rate in the system, quantified by the Lyapunov ex-

ponent, does not provide a bound for the mixing rate, the maximal expansion rate

Λ+ = lim
n→∞

sup

{

1

n
ln |(Tn)′(x)| : x ∈ I

}

yields6 the bound α ≤ Λ+ for any interval map T arising from an analytic expanding

circle map, as the following simple corollary to Lemma 3.4.2 shows.

Corollary 4.4.2. Let T, τ and their corresponding transfer operators LT and LI

be defined as in Lemma 3.4.2. Then,

|λ2| ≥ e−Λ+ ,

where λ2 = λ2(LI) is second largest eigenvalue (in modulus) of LI . Equivalently,

α ≤ Λ+.

Proof. Let x0 be the interval endpoint fixed by T , then as (T ′(x0))−1 ∈ σ(LI)

we have

|λ2| ≥ |T ′(x0)|−1 = |(Tn)′(x0)|−1/n ≥ inf
{

|(Tn)′(x0)|−1/n : x ∈ I
}

6The limit exists as the sequence (sup{ln |(Tn)′(x)| : x ∈ I})n∈N is subadditive.
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for any n ∈ N. The claim follows as e−Λ+ = limn→∞ inf
{

|(Tn)′(x0)|−1/n : x ∈ I
}

. !

In comparison with the bounds obtained in Chapter 2, this corollary provides a

barrier for the speed of mixing in an alternative, nonlinear setting of interval maps

arising from analytic expanding circle maps. While in this setup the average expansion

rate Λ is replaced by the maximal expansion rate Λ+, this observation at least partially

recovers the intuition that a specific exponential mixing rate requires the presence of

sufficiently strong (local) expansion.



Concluding remarks and open questions

Our work originated from the question whether the two quantifiers of chaoticity,

Lyapunov exponents and mixing rates, can be related to each other. In a simple setting

of topologically mixing piecewise linear expanding Markov maps on the interval, we

have shown that the Lyapunov exponent provides a barrier to the exponential mixing

rate, by establishing a lower bound for the subleading eigenvalue of the associated

transfer operator. This bound, however, fails to generalise to a nonlinear setting, as

we illustrated by a family of expanding interval maps with arbitrarily fast exponential

mixing, but bounded Lyapunov exponent. Instead, the bound can be restored in spirit

by replacing the Lyapunov exponent with the maximal expansion rate.

These results followed from more general considerations concerning the correlation

spectrum of analytic expanding circle maps. The key step was to establish a natural

representation of the adjoint of the transfer operator for these maps. For the class

of finite Blaschke products (which the above family belongs to), this representation

takes the form of (compact) composition operators on holomorphic function spaces,

allowing for determination of the entire correlation spectrum.

Explicit knowledge of the spectrum of the transfer operator proves useful in an-

swering certain questions and provides a testing ground for conjectures. In this final

section we want to point out a number of open questions resulting from our work. We

hope that some of these can be tackled with similar methods in the future.

Mixing rates and maximal expansion rates. For interval maps arising from

expanding circle maps, Corollary 4.4.2 asserts the lower bound |λ2| ≥ e−Λ+ for the

subleading eigenvalue λ2 of the transfer operator in terms of the maximal expansion

rate Λ+. It is a natural question whether a similar bound extends to a more general

class of expanding maps on the interval. It appears plausible to believe that in interval

maps exponential mixing should not happen with a rate faster than with the rate given

by 2Λ+. Note that for the tent map we have |λ2| = e−2Λ = e−2Λ+ . Further numerical

simulations for interval maps which do not arise from (smooth) circle maps motivate

the following question.

Question 1. Let T : I → I be an analytic expanding full branch interval map,

and LI : H∞(D) → H∞(D) the associated compact transfer operator given by (3.22)

for a suitable D ⊂ C containing I. Is it then true that

|λ2| ≥ e−2Λ+ ,

69
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where λ2 is the second largest eigenvalue in modulus of LI? Moreover, does the

sharper estimate

|λ2| ≥ e−Λ+

hold, if T ′ has constant sign?

Nontrivial ‘nonessential’ spectrum. Dealing with the transfer operator on

spaces of less regular functions gives rise to essential spectrum and leads to the ques-

tion whether 1 may occur as the only eigenvalue outside the essential spectrum. In

[43] the authors addressed this question by constructing an analytic expanding circle

map with its transfer operator having an isolated eigenvalue different from 1 outside

the essential spectrum when acting on C1 functions. This was achieved by starting

with a piecewise linear expanding circle map, for which the transfer operator consid-

ered on BV has such eigenvalue outside the essential spectrum, smoothing this map

with the Gaussian convolution kernel and then applying spectral perturbation theory

to the corresponding transfer operator.

It appears that the Blaschke map considered in (3.18) for µ = −0.7 − 0.7i, say,

provides an explicit example of analytic expanding circle map with the eigenvalues

µ and µ̄ outside the essential spectrum on C1. This informal statement is based on

a computational bound on the essential spectral radius but probably can be made

rigorous in the future.

Question 2. What are the conditions on the parameters of Blaschke maps for the

existence of isolated eigenvalues outside ρess(L|C1)? Can there be arbitrarily many

such eigenvalues?

Nontrivial eigenvalues of circle maps. In [63, Thm. 1.2] using techniques

from potential theory it was shown that there is a dense set of analytic expanding

full branch interval maps which have infinitely many nontrivial eigenvalues decaying

almost exponentially.

Question 3. Can one adapt these techniques together with the knowledge of the

spectrum for Blaschke maps to show a similar result in the case of analytic expanding

circle maps?

Rational circle maps. Theorem 4.3.4 provides the spectrum of transfer opera-

tors for rational maps τ preserving the unit circle, given by finite Blaschke products.

If τ is an analytic circle map given by any rational function, it is not difficult to see

that it is given by the same expression as (4.11), however with ai in Ĉ \ T (instead

of D), leading to poles inside the unit disk, which prevent the upper triangular block

structure of the adjoint operator L′.

Question 4. Can one still use the structure of the adjoint representation L′ to

deduce some information about the spectrum?
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More general transfer operators. For an expanding circle map τ arising from

a finite Blaschke product, one can consider transfer operators (3.10) with more general

weights wk replacing the weights φ′k. If we take wk = (φ′k)
1−s with s ∈ N, then

the upper triangular block structure of the adjoint L′ in (4.9) is preserved. The

upper left operator is a compact weighted composition operator on H2(Dr) given by

f #→ (τ ′)s · (f ◦ τ). Its spectrum is known to consist of eigenvalues λn = (τ ′(z0))s+n,

n = 0, 1, . . ., where z0 is the unique fixed point of τ in Dr. Clearly, these eigenvalues

are in σ(L). However, the lower right operator in (4.9) is not related to a compact

(weighted) composition operator (compare (4.14)), as τ ′ is not holomorphic on D∞
R .

Question 5. Is it possible to obtain the entire spectrum of L with weights wk =

(φ′k)
1−s for s ∈ N?

’Lifts’ of Blaschke products. Given an expanding circle map τ arising from a

finite Blaschke product, it is possible to construct a new circle map τ̃ given by the

semiconjugacy (p◦ τ̃)(z) = (τ ◦p)(z) with p(z) = zn for an integer n ≥ 2. By choosing

branch cuts (arising from the n-th root of unity) appropriately, one can check that τ̃ is

an analytic expanding circle map, however no longer given by a Blaschke product. In

particular, taking τ(z) = z(µ− z)/(1−µz) with µ ∈ (−1, 1) and n = 2, one can relate

the matrix representations as in (3.19) of τ̃ and τ , and deduce that the respective

transfer operators L̃ and L have the same nonzero eigenvalues. However, if n > 2

the matrix representation (3.19) as well as numerical simulations suggest that L̃ has

additional nonzero eigenvalues.

Question 6. What is the spectrum of L̃ associated to τ̃ for n > 2?

Perturbations of Blaschke products. Let us consider a finite Blaschke prod-

uct B (expanding on T) from a complex dynamics perspective. Then T is the Julia

set of B, and the two complementary disks in Ĉ \ T are the connected components

of the Fatou set. Note that B is ‘mirror symmetric’ with respect to T in the sense

that B(z) = (ψ ◦ B ◦ ψ)(z), where ψ(z) = 1/z̄. More generally, one can consider

perturbations of Blaschke products which have a quasicircle as their Julia set (instead

of T). Similarly to the approaches taken in [49, 50], one can then define a transfer

operator L on a suitable space of holomorphic functions on a neighbourhood of the

Julia set and show its compactness.

Question 7. In this setting it appears possible to obtain a similar structure

for the adjoint operator L′. Can the spectrum of L′ again be deduced from certain

composition operators? In this case, we would expect that the eigenvalues are not

necessarily complex conjugates of each other, as the contraction rates at the fixed

points in the interior of the Fatou set need not be of the same modulus, due to loss

of symmetry.
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Higher-dimensional dynamics. It is of great interest to determine the spec-

trum of transfer operators associated to higher-dimensional dynamical systems. In-

formally, by coupling finite Blaschke products it seems to be possible to construct

higher-dimensional expanding maps, for which the correlation spectrum can be de-

duced from the spectrum of individual maps. The main goal is to obtain the spec-

trum of the transfer operator for nontrivial hyperbolic systems (see [66] for a study of

hyperbolic diffeomorphisms of T2 obtained from two-dimensional Blaschke products).

For this, one of the first difficulties would be to establish an appropriate function

space.

Question 8. Using our results on the spectrum of transfer operators for one-

dimensional Blaschke products, is it possible to construct hyperbolic maps on T2 with

explicitly known spectrum?



Appendix A: Basic spectral theory

We briefly summarise some standard results from spectral theory, see, for example,

[87, Ch. V] for more details.

Let L : V → V be a bounded linear operator on a Banach space (V, ∥·∥), and

denote its kernel and image by ker(L) and im(L), respectively. Its spectrum σ(L) is

defined as the set of all λ ∈ C such that (λI−L) has no bounded inverse on V , where

I is the identity operator on V . The complement of the spectrum C\σ(L) is called the

resolvent set. For each λ in the resolvent set, the resolvent R(λ) = (λI − L)−1 is well

defined and holomorphic on C \ σ(L), in the sense that λ #→ φ(R(λ)) is holomorphic

for any bounded linear functional φ on the space of bounded linear operators on V .

The spectrum is a compact subset of a closed disk with radius ρ(L) = sup{|z| :
z ∈ σ(L)}. The radius ρ(L) is called spectral radius and can be obtained as the limit

ρ(L) = lim
n→∞

∥Ln∥1/n . (A.1)

In particular, the latter implies that for every ε > 0, there is cε > 0 such that

∥Lnf∥ ≤ cε ∥f∥ (eερ(L))n for all n ∈ N. (A.2)

An element λ ∈ σ(L) is an eigenvalue of L if λI−L is not injective. The geometric

multiplicity of λ is the dimension of its eigenspace {v ∈ V : (λI − L)v = 0}, and its

algebraic multiplicity is the dimension of the generalised eigenspace {v ∈ V : ∃m ≥
1, (λI − L)mv = 0}.

The spectrum of any bounded linear operator L can be decomposed into a discrete

part, made up of isolated eigenvalues of finite algebraic multiplicity, and the essential

spectrum, denoted by σess(L). The essential spectral radius is defined as ρess(L) =

sup{|z| : z ∈ σess(L)} and can be characterised as the radius R ≥ 0 of the smallest

closed disk centred at 0, such that every λ ∈ σ(L) with |λ| > R is an isolated eigenvalue

of finite algebraic multiplicity.

A bounded operator L : V → V is quasicompact if ρess(L) < ρ(L). It is compact if

any bounded set in V is mapped to a relatively compact set in V . The spectrum of a

compact operator is a sequence of eigenvalues (λn(L))n∈N converging to zero, together

with zero itself7.

We denote by V ∗ the topological dual of V , that is the space of continuous linear

functionals on V . The adjoint of L is L∗ : V ∗ → V ∗, given by the adjoint equation

l(Lv) = (L∗l)(v) for all v ∈ V and l ∈ V ∗. Its spectrum coincides with that of L.

7The set of nonzero eigenvalues may be finite, in which case we set λn(L) = 0 for all large n ∈ N.
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In this appendix we provide the ommited proofs for results stated in Section 1.3.

For convenience, their statements and the standing assumptions (AS1) and (AS2) are

repeated here.

(AS1)

Let T : X → X be nonsingular with respect to m and assume that

it possesses a unique acip measure µ with density ϱ ∈ L1(X,m)

bounded away from zero and infinity, and normalised so that
∫

X ϱ dm = 1.

(AS2)

Let T satisfy (AS1) and let L be its associated transfer operator.

Assume that V is an L-invariant subspace, densely and continuously

embedded in L1(X,m) such that L restricted to V is quasicompact.

Lemma 1.3.4. Let T and V satisfy (AS2). Then the unique invariant acip density

ϱ is in V . The spectral radius of L : V → V is 1, and if additionally the acip measure is

mixing, then the only spectral point on the unit circle is 1, which is a simple eigenvalue.

Proof. For convenience, in this proof we write LV for the transfer operator con-

sidered on V and keep writing L for the operator considered on L1(X,m). The two

are related by

JLV = LJ,

where J : V → L1(X,m) is the continuous embedding of V in L1(X,m). Its adjoint

J∗ : L1(X,m)∗ → V ∗ is injective as J has dense range. Moreover, the adjoint operators

L∗
V and L∗ are related by

L∗
V J

∗ = J∗L∗.

Let l ∈ L1(X,m)∗ be given by l(f) =
∫

X f dm, then from the definition of L in (1.6)

we obtain l(f) = l(Lf) = (L∗l)(f) for any f ∈ L1(X,m). Thus 1 is an eigenvalue

of L∗. As J∗ is injective, it follows that 1 ∈ σ(L∗
V ) = σ(LV ). By [35], injectivity of

J implies that every connected component of σ(LV ) has nonempty intersection with

σ(L). From quasicompactness of LV and the fact that σ(L) is contained in the unit

disk, it follows that 1 is an eigenvalue of LV (and the spectral radius of LV is 1). For

h ̸= 0 such that LV h = h, we get LJh = Jh, which implies that Jh is a multiple of

the unique invariant density ϱ as 1 is a simple eigenvalue of L. Hence, ϱ is in V .

The assertion that the eigenvalue 1 is the only spectral point of LV on the unit

circle is a consequence of mixing. In order to see this, assume to the contrary that

there exists h ̸= 0 such that LV h = λh with λ ̸= 1 but |λ| = 1. This implies that
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Jh is an eigenvector of L with the same eigenvalue λ, which contradicts the mixing

assumption.

Simplicity of the eigenvalue 1 for LV follows from the same argument as for L. !

Proposition 1.3.6. Let T and V satisfy (AS2) with V a subspace of L∞(X,m),

and Mϱ(V ) ⊆ V . Additionally, assume that the unique acip measure is mixing. Sup-

pose that L : V → V is quasicompact. Then

αV ≥ − ln sup{|λ| : λ ∈ σ(L) \ {1}} > 0.

Proof. The proof relies on the spectral decomposition of L, see [87, §V.9]. We

will write I for the identity on V . By Lemma 1.3.4 the eigenvalue 1 is simple and is

the only eigenvalue on T. As L is quasicompact, 1 is isolated and we can define Π1

the spectral projection of L associated with the eigenvalue 1, which satisfies Π1L =

LΠ1 = Π1 with σ((I − Π1)L) = σ(L) \ {1}, see, for example, [87, Thm. 9.1, Ch. V].

The projection given by Pf = (
∫

X f dm)ϱ as in (1.7) also satisfies the same relations

PL = LP = P , and one can show that P = Π1. Writing L = P+R with R = (I−P )L
so that ρ(R) = sup{|λ| : λ ∈ σ(L) \ {1}} and using the above commutation relations,

we observe that Ln − P = Rn for n > 0. Now, for f, g ∈ V , from (1.9) we get

|Cf,g(n)|1/n =

∣

∣

∣

∣

∫

X
Rn(fϱ) · g dm

∣

∣

∣

∣

1/n

≤ (∥Rn(fϱ)∥∞ ∥g∥∞)1/n

≤
(

c2 · ∥Rn(fϱ)∥V ∥g∥V
)1/n

with some c > 0, as V is continuously embedded8 in L∞(X,m) (that is ∥·∥∞ ≤ c ∥·∥V ).
As for every ε > 0 we have ∥Rn(fϱ)∥V / ∥fϱ∥V = O(eεnρ(R)n) as n → ∞, see (A.2),

it follows that

lim sup
n→∞

|Cf,g(n)|1/n ≤ ρ(R),

for all f, g ∈ V . Hence, αV ≥ − ln ρ(R). !

Lemma 1.3.7. Let L : V → V be a compact operator on a Banach space V , with

eigenvalue sequence (λn(L))n∈N, ordered by decreasing modulus, with repetitions ac-

cording to algebraic multiplicity. Let V ∗ denote the topological dual of V . Then, for

n ∈ N,

|λn(L)| = inf
Wn⊆V

codimWn<n

sup

{

lim sup
k→∞

|g(Lkf)|1/k : f ∈ Wn, g ∈ V ∗

}

.

Proof. We will first deal with a simple case of the statement, when L has (count-

ably many) simple eigenvalues |λ1| > |λ2| > . . ..

For n ∈ N let Π1, . . . ,Πn be the spectral projections associated with the eigenval-

ues λi satisfying ΠiΠj = 0 for i ̸= j and Π2
i = Πi, see [87, Thm. 9.1, Ch. V]. Moreover,

8This follows by an application of the closed graph theorem and the fact that V is continuously
embedded in L1(X,m).
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ΠiL = LΠi = λiΠi for every i. So we can write L = λ1Π1 + λ2Π2 + · · ·+ λnΠn +Rn

with Rn : V → V a bounded operator and ρ(Rn) < |λn|. We first show that

inf
Wn⊆V

codimWn<n

sup

{

lim sup
k→∞

|g(Lkf)|1/k : f ∈ Wn, g ∈ V ∗

}

≤ |λn|. (B.1)

For this, observe that W1 = V , and for n > 1 choose Wn = ker(Π1) ∩ ker(Π2) ∩ · · · ∩
ker(Πn−1). Note that codimWn = n − 1 as codimker(Πi) = 1 and ΠiΠj = δijΠi.

Then for any f ∈ Wn, we have

|g(Lkf)|1/k ≤
(

|λn|k|g(Πnf)|+ |g(Rk
nf)|

)1/k

≤ |λn| (|g(Πnf)|+ cε ∥f∥V ∥g∥V ∗)
1/k ,

with some ε > 0 and constant cε such that eερ(Rn) < |λn| by (A.2). Thus

lim sup
k→∞

|g(Lkf)|1/k ≤ |λn|,

for all f ∈ Wn and g ∈ V ∗, and (B.1) follows.

For the converse direction, we take any Wn ⊆ V with codim(Wn) < n, and verify

the following claim:

There exist f ∈ Wn and g ∈ V ∗ such that g(Πif) ̸= 0 for some i = 1, . . . , n. (B.2)

As Wn has codim(Wn) < n and S = im(Π1)⊕ im(Π2)⊕ · · ·⊕ im(Πn) has dim(S) =

n, it follows that Wn ∩ S ̸= {0}. Then there is an f ∈ Wn ∩ S such that Πif ̸= 0 for

some i. Clearly, there is a g ∈ V ∗ such that g(Πif) ̸= 0, which proves the claim.

We take i to be the smallest index satisfying (B.2), so that Π1f = · · · = Πi−1f = 0.

Writing Lkf = λkiΠif+R̃k
nf where R̃n = λi+1Πi+1+· · ·+λnΠn+Rn with ρ(R̃n) < |λi|,

and using the reverse triangle inequality, we obtain for sufficiently large k

|g(Lkf)|1/k ≥
∣

∣

∣
|λi|k|g(Πif)|− |g(R̃k

nf)|
∣

∣

∣

1/k

≥ |λi|
(

|g(Πif)|− c̃
(eερ(R̃n))k

|λi|k

)1/k

for some ε > 0 with eερ(R̃n) < |λi| and c̃ = cε ∥f∥V ∥g∥V ∗ , see (A.2). Thus,

lim sup
k→∞

|g(Lkf)|1/k ≥ |λi| ≥ |λn|.

Since Wn was arbitrary, this completes the proof for the case of simple eigenvalues

with distinct moduli.

For the general case of the proof, each Π is the spectral projection onto the gen-

eralised eigenspace of some eigenvalue λ, that is im(Π) =
⋃

p≥0 ker(L− λI)p. Then,

with appropriate indexing of the eigenvalues according to their algebraic multiplicities,

we can write L = (λi1Π1 + N1) + (λi2Π2 + N2) + · · · + (λimΠm + Nm) + Rm, where

LΠj = ΠjL = λijΠj + Nj with Nj nilpotent. With these adjustments and a few
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straightforward (but notationally tedious) modifications, the structure of the proof

remains the same as in the simple case. !

Corollary 1.3.8. Let T : X → X and V be as in Proposition 1.3.6. Further, as-

sume that Mϱ(V ) = V and L : V → V is compact with eigenvalue sequence (λn(L))n∈N.
Then, for n > 1,

|λn(L)| = inf
Wn⊆V

codimWn<n−1

sup

{

lim sup
k→∞

|Cf,g(k)|1/k : f ∈ Wn, g ∈ V

}

. (B.3)

Thus, the mixing rate on V is αV = − ln |λ2(L)|.

Proof. As V ⊆ L∞(X,m) we can associate to each g ∈ V an element lg ∈ V ∗

defined as lg(f) =
∫

X fg dm. Observe that

Cf,g(k) = lg
(

(L(I − P ))k(fϱ)
)

.

For the equality (B.3) to hold, it is clear that the proof of Lemma 1.3.7 applies,

if we can verify (B.2). Namely, by the same argument, there is f̃ ∈ Wn such that

Πi(f̃) ̸= 0 for some i = 1, . . . , n. As Mϱ(V ) = V , there is f ∈ V such that f̃ = fϱ.

Choosing g = Πi(fϱ), the claim follows. !
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